US009471427B2

a2 United States Patent

Resch et al.

US 9,471,427 B2
*Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

UTILIZING A LOCAL AREA NETWORK
MEMORY AND A DISPERSED STORAGE
NETWORK MEMORY TO ACCESS DATA

Applicant: CLEVERSAFE, INC., Chicago, IL,
(US)

Inventors: Jason K. Resch, Chicago, IL (US);

Gary W. Grube, Barrington Hills, 1L

(US); Timothy W. Markison, Mesa,

A7 (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/929,925

Filed: Nov. 2, 2015

Prior Publication Data

US 2016/0055060 A1l Feb. 25, 2016

Related U.S. Application Data

Continuation of application No. 14/505,835, filed on
Oct. 3, 2014, now Pat. No. 9,208,026, which is a
continuation of application No. 13/413,469, filed on
Mar. 6, 2012, now Pat. No. 8,880,978.

Provisional application No. 61/470,521, filed on Apr.
1, 2011.

Int. CL.

GO6F 11/10 (2006.01)

HO3M 13727 (2006.01)
(Continued)

(52) US.CL
CPC GOGF 11/1076 (2013.01); GOGF 3/064

(2013.01);

(Continued)
(58) Field of Classification Search
CPC .. GO6F 11/1076; GOGF 3/0619; GOG6F 3/064;
GOG6F 3/067;, GOGF 11/1044; GOGF 3/0604;
GOG6F 3/0646; HO3M 13/2707, HO3M 13/09;
HO3M 13/1515; HO3M 13/23; HO4L 67/1097
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,836,136 B1* 112010 Alfkecoooviviininne
9,208,026 B2* 12/2015 Resch et al.

(Continued)

709/206

Primary Examiner — Cynthia Britt

Assistant Examiner — Dipakkumar Gandhi

(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison

(57) ABSTRACT

A method includes storing, by non-local DSN memory,
redundancy encoded data slices of a set of encoded data
slices. The method includes storing, by each DS processing
module, a copy of the decode threshold number of encoded
data slices in local memory. The method includes receiving,
by the plurality of DS processing modules, read requests for
the set of encoded data slices from user devices. The method
includes, in response to a read request, determining, by a DS
processing module, that at least one encoded data slice is
unavailable; retrieving, by the DS processing module, at
least one of the redundancy encoded data slices from the
non-local DSN memory; and processing, by the DS pro-
cessing module, the read request based on the retrieved at
least one of the redundancy encoded data slice and available
encoded data slices of the local copy of the decode threshold
number of encoded data slices.

14 Claims, 19 Drawing Sheets

user device 12

DS processing unit 16

data file 38&/or
data block 40

computing core 26

DS
processing 34

computing core 26

DS processing 34

computing
core 26

DSN interface 32 Interface 30 |

interface 30

user device 14

DSN interface 32

S _J-— slices 11

TN

network 24

[Cecsiice 1_142 | e@o [ECsice 1 x44 |

L 2 L]
[[EcsliceY_t 4—i| see | ECslice Y X g’

interface 33

computing
core 26

[Ecslice1 142]

D5 managing
unit 18

4 [ECslice 1,xg;|

DSN interface 32 X

[Ecslicey_1 A_L,

¥ [Ecslice v x A_il

computing
core 26

—_—— e\ __ | "

starage integrity
processing unit 20

computing system10

US 9,471,427 B2

Page 2
(51) Imt. ClL 67/1097 (2013.01); HO3M 13/09 (2013.01);
HO4L 29/08 (2006.01) HO3M 13/1515 (2013.01); HO3M 13/23
GO6F 3/06 (2006.01) (2013.01)
GO6F 11/36 (2006.01) .
HO3M 13/09 (2006.01) (56) References Cited
HosM 1 8882'88 U.S. PATENT DOCUMENTS
(52) U.S. CL 2006/0282716 Al* 12/2006 Pomerantz GO6F 11/1076
CPC GOG6F 3/0604 (2013.01); GO6F 3/067 714/710
(2013.01); GO6F 3/0619 (2013.01); 2008/0065827 Al* 3/2008 Byrne ... GO6F 11/1/076
’ By 711/114

GO06F3/0646 (2013.01); GO6F 11/1044

(2013.01); HO3M 1372707 (2013.01); HO4L * cited by examiner

US 9,471,427 B2

Sheet 1 of 19

Oct. 18, 2016

U.S. Patent

OTUWI215AS 8UnndwWiod
T 914

8T Mun
duigeuew s

97 2100
gunndwod

mu IN|NI>L|oc|_wH Al_/_mlm_vlvtloglpwﬂ wleIoW “Wﬂlmalm__ﬂ I_ 0z 1un Suissaonoud

[| Aju821u1 a8eJo1s

_ 9g 1un sq _ —

_ 7y e o O _ 97 2400

) —_— gunndwood
IEEEE [9717 A=0us07 |)

(YY) (YY) _ 7€ s0epRUI NSQ _

| 77X 12523 | ¥ | 11200503 | A A

7 S soo|Is
N —
[57 x A2s23 |eee | 571 222507 |
' ° A TTsys — |~ |-
° °
° ° v
[77 x 1201503 |eee | ZF1 1200507 | coe
_ oee —
7T 901A3p Jasn _ 7€ 20eJ21UI NSQ _
Y Y A
Y
— e e € Suissaosoud
97 2400 —
Suandwoo _ 7€ Suissano4d 5 _ sd

0¥)20|q eiep
10/38E 3|y eiep

9¢ 2400 3unndwod

9T uun duisssoold 5Qq

9 2400 Sunndwod

ZT 921A3p Jasn

US 9,471,427 B2

Sheet 2 of 19

Oct. 18, 2016

U.S. Patent

9/ {|npouwl
22eM33UI NSA

Y7 9|npowl
aoe4Iaul gH

ZZ 9|NpoWl de4Ia1ul OZ @|npow

29 a|npowl

ysey 20BIA3UI UoMIdU 22eLIou] YgH

99 a|npowl
doe4IAUI gSN

{

A A

f

«emt

2oBLI9IUI [Dd

9 solg
NOY

{

29 9|hpow
CRIIENT]]
S0IASP O]

9gG J3]|0JU0D 09 2oeu21ul

Ol UF

Ol
7S Aowsw ZG 43]|0JU0D 0S =2|npow
ulew ke Alowaw e guisssooud

€< 1un Suissadoud
solydesd oaplia

—_———_———_—————- —- - —- .- - - — —_—- .- ._—-- ._—-- .- —_— o _- _— —_— —_— —_— —_— —_—_——_— —_— —_——_— —_— —_— —_— —_———

US 9,471,427 B2

Sheet 3 of 19

Oct. 18, 2016

U.S. Patent

87 XA 921|s BIEP POPO2 JOLID €9 9y T~ A 90I[S BIEP POPOI JOLID
awieu IS aweu 32l
® 5= e
s _ 7€ 90el91U1 18USJ _ :
—] — (]
¥ X~ T 921|S BIEP POPOI JOLIB — . |~ TP T T ©21|s elep popod Jo.l9
sweu 221|S [T — aweu IS
8V X A0S cee AN
elep pepod Jodle elep pepod Jodis _ 8 a|npow adelols _
aweu 201|§ ° aweu 201|§
e
— — . — p—
T X T2dls cee v 1T T90l|s
Blep PapPO0d J0IID Blep pPapod J0JID
aweu 201|§ aweu 201|§
Z8 s|npow pud
sweu eleq | asas | ua8inep | arynen | xspuiaoys
2hloads uolewou] Sugnoy [esiaalun
HneA ! 1 L | !
/€ aweu 321|S o7 19lgo
— eiep
76 A JUBW3Ses eiep
oo 08 3|hpow ssadoe gg sweu
— 1alqo
06 T JuawW3as erep
G oweu 2anos J8 dl
s
py)]
0% 12lqo erep — 3| <«——>
— 87 s|npow Aemaied € |e——>
GE aweu 32Jn0S a
o
al @y _ Asa _ usg ynep | aranea
S aweu 22Jnos F€ anpow gussadold 5@

US 9,471,427 B2

Sheet 4 of 19

voouserepd3 | g | g || "a ["q [a]| a | | S ‘O

gaauseepd3 ["q ["q["a [a9 a] 9] a]

67 4901|s €

caoseepd3 [g | a]"a]'a|a]| q|

toouserepd3 [q ["a["q [a["a[a[qa %]

Eooo_ng_ag |eee| g | o0 | g |eee| g | q [0ee| g]

76 U2W3as e1ep PapPoIUT JO SNQ 7€

8 oInpow pu3

Oct. 18, 2016

U.S. Patent

_
| &8 Jore|ndiuew — _ £g JoreIndivew |
< [3 -9p 201|s-1sod < £8 122|5-9p > a8 49pO9p J 3 -9p 221|s-24d € [3
_ _ _
_ _ _
_ £7 1un |0J1U0D v__sgo‘__ _
_ _ _

[xoausewepos | | _ _
“ | Tg Joleindiuew 57 10018 15DOoUS g7 Joreindiuew |
° < | 3 221)s-150d < : LLdop 201|s-24d € | 3

_

¥6 1sw3as erep pspodu _

_ 76-06 1uawdas erep

US 9,471,427 B2

Sheet 5 of 19

Oct. 18, 2016

U.S. Patent

9°'Ol4

9T un Buissaoodd sQ

77 AMowaw NSQ

g€ uunsq
0T Alowaw
— — 2AlIp <>
9¢ 1un sg 00 9¢ 1un sg UBWCM@E
9¢
A A Z0T AJowsw 9402 unndwod
yseld4
A
Y Y S /
B T —
A A
_ 7€ Suissaooud s _
97 aJod dunndwod
— Y — Y 0T Adowaw 0T
T 2dIASp Josn | @@ ® | 7T 301Aap Jash 9ALIp duaUSew Alowaw yse|4

ZT 221A3p Jasn

US 9,471,427 B2

Sheet 6 of 19

Oct. 18, 2016

U.S. Patent

Y. 'Old
Y11 AMowsw [ea0|
A
— ZCT elep 143
9T Hun < SIS JO
8uissanoud _ Jsqunu
¢ 8CT sal|s
Suiurewal
_ 8TT
0T - a|npow s321[s 3403s
8TT sal|s a|npow 8TT sa0l|s
duiulewsu $90I|S Suiuiewsu
Suiuiewal _
indino eT savlIs
JLREN
Z¢ Aowsw _
Nsd < — <€ == 3|nhpow wﬁmﬂ apodoua <€
87T S221|s Zcr elep np 1ep ap
Sulurews.

ZTT °Inpow sq

OTT 221aep Sunndwod

ZCT e1ep

US 9,471,427 B2

Sheet 7 of 19

Oct. 18, 2016

U.S. Patent

9/ '914

Aowaw
NSQ e 01 S32I|S elep papOoJUd JO 13s Yl
JO $901|S elep papodua uiuiewal indino

[Se]

G f

Alowpaw |edo| e
Ul S921|S B1Ep PRPOIUB JO JBqUWINU 3Y3 2J01S

<

T f

LRI
e}ep PaPOIUD JO JAqUINU B dUIWJDIDP

o

o f

S90S ejep
pPapooUd JO 19 e adnpoid 03 eyep IpodUD

= A

US 9,471,427 B2

Sheet 8 of 19

Oct. 18, 2016

U.S. Patent

JL°OHd
PTT Aowsw |e20o|
A
9T uun —
uissadoud 82T seols UNNLWMWM”N
sd Suiurews.
Y
€< 94T
_ v s1sanbal
89T . 3/npow s32I|s peal
sisenbau 8CT s=01Is |e20]| DAIDIB
peaJ Sutuiewsy ZCl exep
> 9¥T o|npow
ZeT sisonbaJ |B20| anss|
87T so0l|s > 3|npow S301|S 3p0I3P
77 Alowaw Suluiewsy ST isenbai
NSQ CLEINEY
8ST sisenbai peas 0ST o|npow ¥¥T o|npow
8GT si1sanbau peaJ sisonbal NSQ @nss| €« 1sonbaJ oA1203 wa

ZVT aInpow 5@

OFT 221Aaep Sunndwod

¥aT
1sonbal
ELEIFIEY]

US 9,471,427 B2

Sheet 9 of 19

Oct. 18, 2016

U.S. Patent

az'oid

elep ayy aonpoudal 0} Sa2I|S BlEp PapOdUD
JO JaquINU p|oyYSaJy3 9podI3p 23} 9p0oIap
‘paAI3D3J U3 2ABY S201|S B1RP PIPOIUD
}JO JaquINu pjoySaJy3 9PoI3P Y3 uaym

Q|

w 1<

Alowdw NSQ
e 01 s)1senbaJ peaJ elep alow Jo 3Uo 2NsS|

Nl
i

$24Y3 3pooap

AJowaw [ed0] BY} WOJ) paAIsdal
u29q 2ABY SIJI|S B1EP PIPOIUD JO JaqWnu
PIOYS34Y3 2p023p B JaY1aym aulwiIal1ap

T k

AJowsuw |ed0|
e 0} sisanbaJ peaJ ejep Jo Jaquinu B anss|

o

ot A

elep Joj 1senbal |eAslilad B aAlRd3l

O

0ot A

US 9,471,427 B2

Sheet 10 of 19

Oct. 18, 2016

U.S. Patent

7T Mowsw
NSd

V8 'Old
VLT AMowsw [e00|
7y A
06T sisanbai
ERITHEIETETS] 88T
sonsLa1oRIBYD 81 599U
53T 2ouewopad
a|hpow
< sJe|d
06T sisenbal 1enuod Y
ERNEYETETY)
87T @npowl
suawisnipe
Je|pid
BUIWIBID
_ > IwJ219p
88T sonusliaroeseld
2ouewsopad
>| T
ggT Je1aweled Yipim dnpow
Je||id posesJosp sa|yY <
e1ep a4031s

< VIR

ZLT 3|npow sq

0/ZT 221a8p 3unndwod

z8t
sa|y erep

US 9,471,427 B2

Sheet 11 of 19

Oct. 18, 2016

U.S. Patent

98 '9Id

S90I[S B1EP PIPOIUD PaLLIUSPI BY3 213|9p

o k

S20I|S elep pPapPOoIUd payluapl
9onpoud 03 sie|[id paypuapl siow Jo
9UO Ul paJ03s SaDI[S elrep papodua Ajpuapl

502 £

sie||id paguuapl
2Jow Jo auo aonpold 031 19|9p 01 Alowaw

ay3 ulyum sse|id aiow Jo auo Ajpuapl

e x

J91aweled yipim Jejid
9Y1 JO 9SeaJo9p e 21ed1pul 0} Jaaweled
yipim Jejid e isnlpe 01 Jayiaym auiwia1sp

™ k

S92I|S B1Ep PIPOIUD JO S1DS JO
Ajljesn|d e se Alowaw e ul 3|y e1ep B 3I0IS

= A

US 9,471,427 B2

Sheet 12 of 19

Oct. 18, 2016

U.S. Patent

Z¢ Aowaw
NSd

ZZZ ?npow s@

V6 'Dld
YZT AMowsw |edo
A A
ZET se0l]s
10 s19s5qns 35T
sansualoeleyo V81 sa0I|s
377 aouewuopad

a|npow

«< sieqd
CET SIS puedxa Y
10 s1asqns
9¢¢ °@|npow
siuswisn(pe
sejd
2UlWJID
— >| wJsiap
RQT sousialeeyd
douew.oyad
S I 744
0c¢ Jaweled Yipim a|npow
Je||id paseasoul s9|y <

«< elep aJ031s
T P sels

Oce 221nap Bunndwod

8T
so|y elep

US 9,471,427 B2

Sheet 13 of 19

Oct. 18, 2016

U.S. Patent

96 'OId

S90S e1ep
papodu 4o s19sqns Jo Alljeln|d ay3 2401s

= r

$921|S e1ep PapoIUB Jo s1asgns jo Ayjeanid
e sonpoJd 01 Jersweled yipim Jej|id
paseaJoul 8yl Sulzi|an By elep e spodUd

e8]

iz A

S|4 e3ep 240W JO U0 AJUIPI

O
o

ove A

Joloweled
yipim Jejjid paseatou] ue aonpodd o1
sie||id |euonippe JO JaqWinu B UjWJI}3pP

e £

Jo2wesed yipim Jejid
9Y3 JO 9SE2JOUI Ue 31edIpUl 0} Ja1Pweled
yipim Jejjid e 1snfpe 01 Jayiaym auiwalap

e £

S901|S B1EP PIPOOUD JO S13S JO
Aljedn|d e se Aslowaw e ul 3| e1ep e 3401s

ez A

US 9,471,427 B2

Sheet 14 of 19

Oct. 18, 2016

U.S. Patent

‘Ol4

| _| 78z 2inpouw |
! 6T 5991Is NYM ~ NS Nvm
. | 1senbay
ZZ Mowsw I — »
26 1sanbai
NSa
< __ 321|s NVM v
_ 8¢ @Inpow - 98¢
— apooap 7 ae -
79C Nvm _ P 8T
|||||| — A ajnpow
|||||| baJ
1 _ 159N
| CINEREY)
_ 3| 0SZ 2|hpow v6¢C
257 Aowaw _ 35z 5951 N >| 08¢ 3|np «< {sT4
: S90I|S 1sonbay
20IADP Paxy . NV 159nbau
-
v _ 96¢ 1sanbal
: _ SIS NV
897 Alowaw —_—
oINS _ 9/¢ 3npow
IASP paxy |
— yipim «<
_ Z6C S21|S NYM NV 193]35
997 Aowaw |
ERINCTe) | =
2|lqow 7k4 e
b _A __ rLeoINpoW | g — 3Inpowl |ee——
H _ 06T S321Is NV Yapim 88C SIS | 5poous | 98T
357 owpw _ N AREIER eyep
ERINET) |
3jiqow | 0L¢ 3|npow 5@
757 NV I“ 09¢ 221n9p Sunndwod

US 9,471,427 B2

Sheet 15 of 19

Oct. 18, 2016

U.S. Patent

90T ‘OId

Alowaw
NSd 243 WoJj $301|S elEp Papodud
Jo anjea yum Jejjid NyM 2yl 1sanbal

o
—
o

N

9|gessanoe
A

9]g1SS3008 SI N Y1 JaYIaym sujwJlap

elep ay3 aonpodd
01 SIS BIEP PAPOIUD BY} SPOIBP
‘PaAIID] USDQ DABY SIDI|S BIEP PIPOJUD
Jo Ja1aweled pjoysatyl SpoIap B Uaym

©0
o

0

A

elep =yl an=ldiad O} 1sanbase oAlodal

o £

&

Alowsw NS Byl Wod}

S9JI|S B1BP PAPOIUD JO BN|eA Yipim Jej|id
NV 23 Jo auo 1sea| 1e 1sanbaJ ‘paniadal
UD3(q 10U BABY $3J1|S B1EP PAPOIUD
Jo Jraweled pjoysatyl apodIap e usym

Alowaw NS e ul 28el0ls 1o} SdI|S e1ep
Pap0odu? JO 135 B3 JO SPII|S BIEP PIPOIUD
10 2n|eA YIpIM Jejjid NYAN € 10995

<t
o

7O A

i r

salowaw
3|qe|leae Ny Ul 98e403s 40} Sa0I[S
B1EP PRPODUR O 135 BY3} JO S20I|S elep
papooua Jo anjea Yipim Jej|id N7 e 109|9s

salowaw
NV 243 WoJy saol|s elep papodua
10 anjea yipim Jejid Ny 2y 1senbau

ol
m

coe A

S90I|S elep
papOoaUd 40 125 e 8dnpoid 0} elep BPOIUD

T)

o A

US 9,471,427 B2

Sheet 16 of 19

Oct. 18, 2016

U.S. Patent

20T 'Old
IIIIII - 0€EE 3|npow

_ . ypm |

_ Zpe gipim | Eld Nvm [

_ sejpd Ny | PUtWHRIeR
7z Mowsw _

NSd _
_
— _ 8¢ s|npouw __
797 NVM _ yIpIm et
IIIIII —)
e | emd vt [€| wpmaed
|||||| 1 i CIIVIESETS) _

_ 4e|iid NV 3EE ploysaiy
89¢ Alowaw | opoIap
30IASp paxy _

3 _

o —

® | 9¢e dnpow
557 Alowaw _ si@1aweled
somnep paxyy | | ustiqelss

|)
99z AJowsw | .

391A9p _ PEE asuodsa ¥TE a|npow
a|Iqow [Aligejiere g, | sewowaw
»
H _/ ZEE 1sanbal - NV
g9z Aowaw | | < Aupigejieae auIWIL1Bp
901A3p [
3jiqow _ TZE 3|npow sQ
292 NV I_ 0Z€ so1nep Sunndwon

US 9,471,427 B2

Sheet 17 of 19

Oct. 18, 2016

U.S. Patent

aot "9i4

anjeA yipim Jejjid NV B 2UlWI19p

Neo)
o

95¢ A

anjea yipim Jefjid Ny e aulwJia1ap

<t
o

Ve A

salJowWaW d|gejleae N1 Y3 Jo sappuenb
uo paseq Jaiweded yipim Jejid e pue
Jo1oweded pjoysalyl apodap e ysijgeisa

o
o

433 A

saIoWaW 3[ge|leAe N 2UIWI19pP

(@]

0sE A

US 9,471,427 B2

Sheet 18 of 19

Oct. 18, 2016

U.S. Patent

TT '9OId

paJiajsuey
u33q aneY SIS e1ep papodua jo dnosd
2431 1ey1 Sunedipul adessaw e indino

(=]
m

0Ze A

uoneso| a8eJ03s aUO 1Sed| 1. 3y} 0}
$92I[S e1ep papodud jo dnoJd ay1 Jajsued

o0
(4]

B5E A

uonedo| 28eJols auo
1sed| 1k 2onpoud 01 SDI|S BIEP PIPOIUD
Jo dnoJug ay3 2J031s 01 DJaYM BUILIIDIBP

<t

: A

J9jsuen
01 AJowaWw Yse|4 |Bd20| 3y} Ul paJols
S20I[S e1Ep PapPOoOUB Jo dnoJud e aulwIIBp

[4

3 A

Jojsuel}

umopinys e Sudalep Uusym
Alowaw yse|4 |e20| B U] PJ03S SII|S eIep
PaPOJUD J3JSUBJY 03 JBYIDYM SUIWIDIP

>4 %¢

US 9,471,427 B2

Sheet 19 of 19

Oct. 18, 2016

U.S. Patent

9¢1 'Oid

92IA3p J3SN J3Yl0UE 3Y1 01
S90S eIEP PapOodUD Jo dnoiS By} Jajsuel)

e k

J9ysuely
01 AJowaw yse|4 |BJ0| BY} Ul PaJ03S
S92I|S ejep papooua Jo dnoig e sulwIlSp

V<T 'Old

AJowaw yse|4 |e20| 3y3 Ul
S92I|S ei1ep papodua o Aujedn|d ayi alois

e x

S2OIADP J3SN J2Y10 2JOW 10 U0 3Y3 WO}
S20I|S eyep papodua jo Ajeln|d e aA1903)

00|

8¢ A

a9¢ A

Jojsueldy

Alowauw yse|4 |B20| e ul pa40o3s SIS elep
pPapPO0JUD Jajsues] 01 JaYylaym aulwialap

| £

ER]ET)
Jasn Jayloue woJj a8essa uoLeldl|os
98eJ03s 221|S BIEP PIPOIUD UE JAIRI

S22IA3p Jash
J9Y30 240W JO 2UO 0} 98esSaWl UOLEeIDI|0S
28e101s 201|S B1EP PAPOIUD U PUDS

€ A

X

3|qeJoney

ploysaiys
uonezi|in e 0} Ajqeloaey saledwod
[2AD] UOLIEZI|IN DY} JOYIDYM BUIWIIDP

i k

>4 e

Aowsw ysel
[eD0] € JO |9AB| UOLEZI|IN B BUIWJIDIDP

o

>\ (743

US 9,471,427 B2

1
UTILIZING A LOCAL AREA NETWORK
MEMORY AND A DISPERSED STORAGE
NETWORK MEMORY TO ACCESS DATA

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility patent application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 14/505,835, entitled “UTILIZING A
LOCAL AREA NETWORK MEMORY AND A DIS-
PERSED STORAGE NETWORK MEMORY TO ACCESS
DATA”, filed Oct. 3, 2014, which is a continuation of U.S.
Utility application Ser. No. 13/413,469, entitled “UTILIZ-
ING A LOCAL AREA NETWORK MEMORY AND A
DISPERSED STORAGE NETWORK MEMORY TO
ACCESS DATA”, filed Mar. 6, 2012, now U.S. Pat. No.
8,880,978, issued on Nov. 4, 2014, which claims priority
pursuant to 35 U.S.C. §119(e) to U.S. Provisional Applica-
tion No. 61/470,521, entitled “FLASH MEMORY UTILI-
ZATION IN A USER DEVICE OF A DISPERSED STOR-
AGE NETWORK™, filed Apr. 1, 2011, all of which are
hereby incorporated herein by reference in their entirety and
made part of the present U.S. Utility patent application for

all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not applicable
BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such
computing systems.

2. Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting system generates data and/or manipulates data from
one form into another. For instance, an image sensor of the
computing system generates raw picture data and, using an
image compression program (e.g., JPEG, MPEG, etc.), the
computing system manipulates the raw picture data into a
standardized compressed image.

With continued advances in processing speed and com-
munication speed, computers are capable of processing real
time multimedia data for applications ranging from simple
voice communications to streaming high definition video.
As such, general-purpose information appliances are replac-
ing purpose-built communications devices (e.g., a tele-
phone). For example, smart phones can support telephony
communications but they are also capable of text messaging
and accessing the internet to perform functions including
email, web browsing, remote applications access, and media
communications (e.g., telephony voice, image transfer,
music files, video files, real time video streaming. etc.).

Each type of computer is constructed and operates in
accordance with one or more communication, processing,

10

15

20

25

30

35

40

45

55

60

65

2

and storage standards. As a result of standardization and
with advances in technology, more and more information
content is being converted into digital formats. For example,
more digital cameras are now being sold than film cameras,
thus producing more digital pictures. As another example,
web-based programming is becoming an alternative to over
the air television broadcasts and/or cable broadcasts. As
further examples, papers, books, video entertainment, home
video, etc., are now being stored digitally, which increases
the demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various
operational aspects of the computer’s processing and com-
munication functions. Generally, the immediacy of access
dictates what type of memory device is used. For example,
random access memory (RAM) memory can be accessed in
any random order with a constant response time, thus it is
typically used for cache memory and main memory. By
contrast, memory device technologies that require physical
movement such as magnetic disks, tapes, and optical discs,
have a variable response time as the physical movement can
take longer than the data transfer, thus they are typically
used for secondary memory (e.g., hard drive, backup
memory, etc.).

A computer’s storage system will be compliant with one
or more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system
(FFS), disk file system (DFS), small computer system inter-
face (SCSI), internet small computer system interface
(iSCS8I), file transfer protocol (FTP), and web-based distrib-
uted authoring and versioning (WebDAV). These standards
specify the data storage format (e.g., files, data objects, data
blocks, directories, etc.) and interfacing between the com-
puter’s processing function and its storage system, which is
a primary function of the computer’s memory controller.

Despite the standardization of the computer and its stor-
age system, memory devices fail; especially commercial
grade memory devices that utilize technologies incorporat-
ing physical movement (e.g., a disc drive). For example, it
is fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of
use. One solution is to utilize a higher-grade disc drive,
which adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID
controller adds parity data to the original data before storing
it across the array. The parity data is calculated from the
original data such that the failure of a disc will not result in
the loss of the original data. For example, RAID 5 uses three
discs to protect data from the failure of a single disc. The
parity data, and associated redundancy overhead data,
reduces the storage capacity of three independent discs by
one third (e.g., n—1=capacity). RAID 6 can recover from a
loss of two discs and requires a minimum of four discs with
a storage capacity of n-2.

While RAID addresses the memory device failure issue,
it is not without its own failure issues that affect its effec-
tiveness, efficiency and security. For instance, as more discs
are added to the array, the probability of a disc failure
increases, which increases the demand for maintenance. For
example, when a disc fails, it needs to be manually replaced
before another disc fails and the data stored in the RAID
device is lost. To reduce the risk of data loss, data on a RAID
device is typically copied on to one or more other RAID
devices. While this addresses the loss of data issue, it raises

US 9,471,427 B2

3

a security issue since multiple copies of data are available,
which increases the chances of unauthorized access. Further,
as the amount of data being stored grows, the overhead of
RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the present inven-
tion;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the present invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
present invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the present invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the present
invention;

FIG. 6 is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 7A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 7B is a flowchart illustrating an example of storing
data in accordance with the present invention;

FIG. 7C is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 7D is a flowchart illustrating an example of retriev-
ing data in accordance with the present invention;

FIG. 8A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 8B is a flowchart illustrating an example of con-
tracting data storage in accordance with the present inven-
tion;

FIG. 9A is a schematic block diagram of another embodi-
ment of a computing system in accordance with the present
invention;

FIG. 9B is a flowchart illustrating an example of expand-
ing data storage in accordance with the present invention;

FIG. 10A is a schematic block diagram of another
embodiment of a computing system in accordance with the
present invention;

FIG. 10B is a flowchart illustrating an example of access-
ing data in accordance with the present invention;

FIG. 10C is a schematic block diagram of another
embodiment of a computing system in accordance with the
present invention;

FIG. 10D is a flowchart illustrating an example of setting
up a dispersed storage in accordance with the present
invention;

FIG. 11 is a flowchart illustrating an example of trans-
ferring data in accordance with the present invention;

FIG. 12A is a flowchart illustrating an example of gen-
erating an encoded data slice storage solicitation message in
accordance with the present invention; and

FIG. 12B is a flowchart illustrating an example of pro-
cessing an encoded data slice storage solicitation message in
accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of a computing
system 10 that includes one or more of a first type of user

10

15

20

25

30

35

40

45

50

55

60

65

4

devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may
include one or more wireless and/or wire lined communi-
cation systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area
networks (LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee,
etc.).

Each ofthe user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity process-
ing unit 20 may be a portable computing device (e.g., a
social networking device, a gaming device, a cell phone, a
smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed
computing device (e.g., a personal computer, a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment). Such a portable or fixed computing
device includes a computing core 26 and one or more
interfaces 30, 32, and/or 33. An embodiment of the com-
puting core 26 will be described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30,
32, and 33 includes software and/or hardware to support one
or more communication links via the network 24 indirectly
and/or directly. For example, interface 30 supports a com-
munication link (wired, wireless, direct, via a LAN, via the
network 24, etc.) between the second type of user device 14
and the DS processing unit 16. As another example, DSN
interface 32 supports a plurality of communication links via
the network 24 between the DSN memory 22 and the DS
processing unit 16, the first type of user device 12, and/or the
storage integrity processing unit 20. As yet another example,
interface 33 supports a communication link between the DS
managing unit 18 and any one of the other devices and/or
units 12, 14, 16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly
stored in a plurality of physically different locations and
subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures
of network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include estab-
lishing distributed data storage parameters, performing net-
work operations, performing network administration, and/or
performing network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established
for a user group of devices, established for public access by
the user devices, etc.). For example, the DS managing unit

US 9,471,427 B2

5

18 coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing
unit 18 also determines the distributed data storage param-
eters for the vault. In particular, the DS managing unit 18
determines a number of slices (e.g., the number that a data
segment of a data file and/or data block is partitioned into for
distributed storage) and a read threshold value (e.g., the
minimum number of slices required to reconstruct the data
segment).

As another example, the DS managing unit 18 creates and
stores, locally or within the DSN memory 22, user profile
information. The user profile information includes one or
more of authentication information, permissions, and/or the
security parameters. The security parameters may include
one or more of encryption/decryption scheme, one or more
encryption keys, key generation scheme, and data encoding/
decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS man-
aging unit 18 tracks the number of times a user accesses a
private vault and/or public vaults, which can be used to
generate a per-access bill. In another instance, the DS
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for
potential failures, determines the devices’ and/or units’
activation status, determines the devices’ and/or units’ load-
ing, and any other system level operation that affects the
performance level of the system 10. For example, the DS
managing unit 18 receives and aggregates network manage-
ment alarms, alerts, errors, status information, performance
information, and messages from the devices 12-14 and/or
the units 16, 20, 22. For example, the DS managing unit 18
receives a simple network management protocol (SNMP)
message regarding the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of
the DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iISCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data file 38
and/or data block 40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding

10

15

20

25

30

35

40

45

50

55

60

65

6

dispersal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data seg-
ments. For example, the DS processing 34 may partition the
data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2* to 2 bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or
from groups of segments to groups of segments, etc.).

For each of the Y data segments, the DS processing 34
error encodes (e.g., forward error correction (FEC), infor-
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data
storage parameters and the error coding scheme. For
example, if a Reed-Solomon (or other FEC scheme) is used
in an n/k system, then a data segment is divided into n slices,
where k number of slices is needed to reconstruct the
original data (i.e., k is the threshold). As a few specific
examples, the n/k factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the corre-
sponding EC slice 42-48. The slice name includes universal
DSN memory addressing routing information (e.g., virtual
memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via
the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize
the EC slices 42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48
is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the
DS managing unit 18 may indicate that each slice is to be
stored in a different DS unit 36. As another example, the DS
managing unit 18 may indicate that like slice numbers of
different data segments are to be stored in the same DS unit
36. For example, the first slice of each of the data segments
is to be stored in a first DS unit 36, the second slice of each
of the data segments is to be stored in a second DS unit 36,
etc. In this manner, the data is encoded and distributedly
stored at physically diverse locations to improve data stor-
age integrity and security.

Each DS unit 36 that receives an EC slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.

The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the
exception that it includes the DS processing. As such, the
device 12 encodes and slices the data file and/or data block
it has to store. The device then transmits the slices 11 to the
DSN memory via its DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file
or data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may

US 9,471,427 B2

7

also communicate with the DS managing unit 18 to verify
that the user device 14 is authorized to access the requested
data.

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, verifies the command,
accesses its virtual to physical memory mapping, retrieves
the requested slice, or slices, and transmits it to the DS
processing unit 16.

Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the
data segment. When Y number of data segments has been
reconstructed, the DS processing unit 16 provides the data
file 38 and/or data block 40 to the user device 14. Note that
the first type of user device 12 performs a similar process to
retrieve a data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuilt slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a
read only memory (ROM) basic input output system (BIOS)
64, and one or more memory interface modules. The
memory interface module(s) includes one or more of a
universal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface
module 70, a flash interface module 72, a hard drive inter-
face module 74, and a DSN interface module 76. Note the
DSN interface module 76 and/or the network interface
module 70 may function as the interface 30 of the user
device 14 of FIG. 1. Further note that the IO device interface
module 62 and/or the memory interface modules may be
collectively or individually referred to as 1O ports.

FIG. 3 is a schematic block diagram of an embodiment of
a dispersed storage (DS) processing module 34 of user
device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module
84. The DS processing module 34 may also include an
interface 30 and the DSnet interface 32 or the interfaces 68
and/or 70 may be part of user device 12 or of the DS
processing unit 16. The DS processing module 34 may
further include a bypass/feedback path between the storage
module 84 to the gateway module 78. Note that the modules
78-84 of the DS processing module 34 may be in a single
unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field

20

40

45

55

65

8

86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a trans-
action message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The
gateway module 78 authenticates the user associated with
the data object by verifying the user ID 86 with the man-
aging unit 18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units
(X=16 wide). The operational parameters may include an
error coding algorithm, the width n (number of pillars X or
slices per segment for this vault), a read threshold T, a write
threshold, an encryption algorithm, a slicing parameter, a
compression algorithm, an integrity check method, caching
settings, parallelism settings, and/or other parameters that
may be used to access the DSN memory layer.

The gateway module 78 uses the user information to
assign a source name 35 to the data. For instance, the
gateway module 78 determines the source name 35 of the
data object 40 based on the vault identifier and the data
object. For example, the source name may contain a file
identifier (ID), a vault generation number, a reserved field,
and a vault identifier (ID). As another example, the gateway
module 78 may generate the file ID based on a hash function
of the data object 40. Note that the gateway module 78 may
also perform message conversion, protocol conversion, elec-
trical conversion, optical conversion, access control, user
identification, user information retrieval, traffic monitoring,
statistics generation, configuration, management, and/or
source name determination.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The number of segments Y may be chosen
or randomly assigned based on a selected segment size and
the size of the data object. For example, if the number of
segments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object.
For instance, if the data object is an image file of 4,194,304
eight bit bytes (e.g., 33,554,432 bits) and the number of
segments Y=131,072, then each segment is 256 bits or 32
bytes. As another example, if segment size is fixed, then the
number of segments Y varies based on the size of data
object. For instance, if the data object is an image file of
4,194,304 bytes and the fixed size of each segment is 4,096
bytes, then the number of segments Y=1,024. Note that each
segment is associated with the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding
dispersal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable,
the grid module 82 error encodes (e.g., Reed-Solomon,

US 9,471,427 B2

9

Convolution encoding, Trellis encoding, etc.) the data seg-
ment or manipulated data segment into X error coded data
slices 42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal
function include a read threshold T, a write threshold W, etc.
The read threshold (e.g., T=10, when X=16) corresponds to
the minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module
indicates proper storage of the encoded data segment. Note
that the write threshold is greater than or equal to the read
threshold for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing
information field includes a slice index, a vault 1D, a vault
generation, and a reserved field. The slice index is based on
the pillar number and the vault ID and, as such, is unique for
each pillar (e.g., slices of the same pillar for the same vault
for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID
and a segment number (e.g., a sequential numbering of data
segments 1-Y of a simple data object or a data block
number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipu-
lation on the slices. If enabled, the manipulation includes
slice level compression, encryption, CRC, addressing, tag-
ging, and/or other manipulation to improve the effectiveness
of the computing system.

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which
of'the DS storage units 36 will store the EC data slices based
on a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS
storage unit attributes may include availability, self-selec-
tion, performance history, link speed, link latency, owner-
ship, available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another
source, a lookup table, data ownership, and/or any other
factor to optimize the operation of the computing system.
Note that the number of DS storage units 36 is equal to or
greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different
segments (e.g., EC data slice 1 of data segment 1 and EC
data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identi-
fies a plurality of DS storage units based on information
provided by the grid module 82. The storage module 84 then
outputs the encoded data slices 1 through X of each segment
1 through Y to the DS storage units 36. Each of the DS
storage units 36 stores its EC data slice(s) and maintains a

35

40

45

55

60

10
local virtual DSN address to physical location table to
convert the virtual DSN address of the EC data slice(s) into
physical storage addresses.

In an example of a read operation, the user device 12
and/or 14 sends a read request to the DS processing unit 16,
which authenticates the request. When the request is authen-
tic, the DS processing unit 16 sends a read message to each
of the DS storage units 36 storing slices of the data object
being read. The slices are received via the DSnet interface 32
and processed by the storage module 84, which performs a
parity check and provides the slices to the grid module 82
when the parity check was successful. The grid module 82
decodes the slices in accordance with the error coding
dispersal storage function to reconstruct the data segment.
The access module 80 reconstructs the data object from the
data segments and the gateway module 78 formats the data
object for transmission to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely
external to the grid module 82. For example, the control unit
73 may be part of the computing core at a remote location,
part of a user device, part of the DS managing unit 18, or
distributed amongst one or more DS storage units.

In an example of a write operation, the pre-slice manipu-
lator 75 receives a data segment 90-92 and a write instruc-
tion from an authorized user device. The pre-slice manipu-
lator 75 determines if pre-manipulation of the data segment
90-92 is required and, if so, what type. The pre-slice
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based on a computing system-wide prede-
termination, a table lookup, vault parameters associated with
the user identification, the type of data, security require-
ments, available DSN memory, performance requirements,
and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in
accordance with the type of manipulation. For example, the
type of manipulation may be compression (e.g., Lempel-
Ziv-Welch, Huffman, Golomb, fractal, wavelet, etc.), signa-
tures (e.g., Digital Signature Algorithm (DSA), Elliptic
Curve DSA, Secure Hash Algorithm, etc.), watermarking,
tagging, encryption (e.g., Data Encryption Standard,
Advanced Encryption Standard, etc.), adding metadata (e.g.,
time/date stamping, user information, file type, etc.), cyclic
redundancy check (e.g., CRC32), and/or other data manipu-
lations to produce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data seg-
ment 92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77
determines which forward error correction algorithm to use
based on a predetermination associated with the user’s vault,
a time based algorithm, user direction, DS managing unit
direction, control unit direction, as a function of the data
type, as a function of the data segment 92 metadata, and/or
any other factor to determine algorithm type. The forward
error correction algorithm may be Golay, Multidimensional
parity, Reed-Solomon, Hamming, Bose Ray Chauduri Hoc-
quenghem (BCH), Cauchy-Reed-Solomon, or any other
FEC encoder. Note that the encoder 77 may use a different

US 9,471,427 B2

11

encoding algorithm for each data segment 92, the same
encoding algorithm for the data segments 92 of a data object,
or a combination thereof.

The encoded data segment 94 is of greater size than the
data segment 92 by the overhead rate of the encoding
algorithm by a factor of X/T, where X is the width or number
of slices, and T is the read threshold. In this regard, the
corresponding decoding process can accommodate at most
X-T missing EC data slices and still recreate the data
segment 92. For example, if X=16 and T=10, then the data
segment 92 will be recoverable as long as 10 or more EC
data slices per segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example,
if the slicing parameter is X=16, then the slicer 79 slices
each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or
other metadata. Note that the type of post-slice manipulation
may include slice level compression, signatures, encryption,
CRC, addressing, watermarking, tagging, adding metadata,
and/or other manipulation to improve the effectiveness of
the computing system.

In an example of a read operation, the post-slice de-
manipulator 89 receives at least a read threshold number of
EC data slices and performs the inverse function of the
post-slice manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to
produce an encoded data segment 94. The decoder 85
performs the inverse function of the encoder 77 to recapture
the data segment 90-92. The pre-slice de-manipulator 83
performs the inverse function of the pre-slice manipulator 75
to recapture the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the
encoded data segment 94 includes thirty-two bits, but may
include more or less bits. The slicer 79 disperses the bits of
the encoded data segment 94 across the EC data slices in a
pattern as shown. As such, each EC data slice does not
include consecutive bits of the data segment 94 reducing the
impact of consecutive bit failures on data recovery. For
example, if EC data slice 2 (which includes bits 1, 5, 9, 13,
17, 25, and 29) is unavailable (e.g., lost, inaccessible, or
corrupted), the data segment can be reconstructed from the
other EC data slices (e.g., 1, 3 and 4 for a read threshold of
3 and a width of 4).

FIG. 6 is a schematic block diagram of another embodi-
ment of a computing system that includes one or more user
devices 12, a dispersed storage (DS) processing unit 16, a
network 24, and a dispersed storage network (DSN) memory
22. The user device 12 may include one or more of a
computing core 26, an interface 32, a Flash memory 102,
and a magnetic drive memory 104. The computing core 26
includes a DS processing 34. The DS memory 22 includes
a plurality of DS units 36. The DS unit 36 includes one or
more of the computing core 26, the interface 32, the Flash
memory 102, and the magnetic drive memory 104.

The Flash memory 102 provides a first memory type and
may be implemented utilizing non-volatile electrically eras-
able programmable read-only memory (EEPROM). An

10

15

20

25

30

35

40

45

50

55

60

65

12

alternative non-volatile solid-state storage technology
including one or more of static random access memory
(SRAM) and dynamic random access memory (DRAM)
may be utilized as a substitute for the Flash memory 102.
The magnetic drive memory 104 provides a second memory
type and may be implemented utilizing a non-volatile ran-
dom access memory device that includes rotating rigid
platters spun by a motor, wherein the rotating rigid platters
serve to magnetically store data that is written and read
utilizing a read/write head that floats above the platters. Such
a first memory device type and a second memory device type
provide storage of data in accordance with memory storage
characteristics. For example, the first memory device type
provides faster access via lower access latency when imple-
mented with Flash memory technology as compared to the
second memory device type when implemented with mag-
netic drive memory technology. As another example, the
second memory device type provides lower-cost storage on
a normalized basis when implemented with the magnetic
drive memory technology as compared to the first memory
device type when implemented with the flash memory
technology.

The DS processing 34 of the user device 12 of the one or
more user devices 12 generates encoded data slices and
facilitates storing the encoded data slices in one or more
memories of the computing system. Alternatively, a DS
processing unit 34 of the DS processing unit 16 generates
encoded data slices and facilitates storing the encoded data
slices in the one or more memories of the computing system.
The memories of the computing system includes Flash
memory 102 of each user device 12 of the one or more user
devices 12, magnetic drive memory 104 of each user device
12 of the one or more user devices 12, Flash memory 102 of
each DS unit 36 of the plurality of DS units 36, and magnetic
drive memory 104 of each DS unit 36 of the plurality of the
DSN memory 22.

The DS processing 34 facilitates the storing of the
encoded data slices in the one or more memories of the
computing system by selecting one or more storage loca-
tions based on a storage requirement. The storage require-
ment includes one or more of a security requirement, a
performance requirement, a reliability requirement, a pre-
determination, a cost requirement, a memory availability
indicator, and a memory availability requirement. For
example, the DS processing 34 selects a local Flash memory
102 of an associated user device 12 when the performance
requirement includes a very low retrieval access latency
requirement. As another example, the DS processing 34
selects a magnetic drive memory 104 of a DS unit 36 when
the cost requirement indicates a very low cost requirement
and when the reliability requirement indicates a very high
required reliability level. As yet another example, the DS
processing 34 selects a set of Flash memories associated
with a set of other user devices 12 when a set of memory
availability indicators associated with the set of other user
devices 12 compares favorably to the memory availability
requirement.

In an example of operation, a DS processing 34 of a first
user device 12 dispersed storage error encodes data to
produce a plurality of sets of encoded data slices. The DS
processing 34 selects a set of Flash memories associated
with a set of other user devices 12 of the one or more user
devices 12. The DS processing 34 stores a decode threshold
number (e.g., k) of encoded data slices of a set of the
plurality of sets of encoded data slices in a local flash
memory associated with the first user device 12. The DS
processing 34 outputs other encoded data slices of the set of

US 9,471,427 B2

13

the plurality of sets of encoded data slices to the set of other
user devices 12 via the interface 32 and the network 24 for
storage therein.

In another example of operation, the DS processing 34 of
the first user device 12 dispersed storage error encodes data
to produce the plurality of sets of encoded data slices. The
DS processing 34 selects a set of magnetic drive memories
associated with a set of DS units 36 of the plurality of DS
units 36. The DS processing 34 stores the decode threshold
number (e.g., k) of encoded data slices of the set of the
plurality of sets of encoded data slices in the local flash
memory associated with the first user device 12. The DS
processing 34 outputs other encoded data slices of the set of
the plurality of sets of encoded data slices to the set of DS
units 36 via the interface 32 of the first user device 12, the
network 24, the interface 32 of each DS unit 36 of the set of
DS units 36, and each computing core 26 of the set of DS
units 36 for storage in a set of magnetic drive memories of
the set of DS units 36.

Alternatively, the DS processing 34 outputs the other
encoded data slices of a set of the plurality of sets of encoded
data slices via the interface 32 of the first user device 12 and
the network 24 to the DS processing unit 16. Next, the DS
processing unit 16 dispersed storage error encodes each
encoded data slice of the other encoded data slices to
produce a plurality of groups of at least one set of encoded
data sub-slice corresponding to each encoded data slice of
the other encoded data slices. The DS processing unit 16
sends the plurality of groups of at least one encoded data
sub-slice via the network 24 to a set of DS units 36 for
storage therein. The method of operation is discussed in
greater detail with reference to FIGS. 7A-12B.

FIG. 7A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing
device 110, a dispersed storage (DS) processing unit 16, and
a dispersed storage network (DSN) memory 22. The DSN
memory 22 includes one or more of a secondary magnetic
drive memory, a computing device memory, a user device
memory, and at least one set of DS units. The computing
device 110 includes a DS module 112 and a local memory
114. The local memory 114 may include one or more
memory devices, wherein each memory device includes one
or more of a flash memory 102, a magnetic drive memory
104, a primary magnetic drive memory, a computing device
memory, a local user device memory, a solid-state memory,
and an optical memory. Alternatively, the local memory 114
may include memory associated with two or more comput-
ing devices 110. The DS module 112 includes an encode data
module 116, a store slices module 118, and an output
remaining slices module 120.

The encode data module 116, when operable within a
computing device, causes the computing device 110 to
encode data 122 utilizing a dispersed storage error coding
function to produce a set of encoded data slices 124, wherein
the dispersed storage error coding function includes a
decode threshold parameter and a pillar width parameter.
The encoding may further include receiving a data storage
request, wherein the request includes a storage requirement
including one or more of reliability, memory utilization,
access latency, and security. The encode data module 116
further functions to encode the data 122 by establishing the
decode threshold parameter and the pillar width parameter
based on one or more of physical characteristics of the local
memory and a local memory performance characteristic.
The local memory performance characteristic includes one
or more of memory utilization, data retrieval reliability, and
data retrieval latency. The local memory physical charac-

30

35

40

45

50

55

14

teristic includes one or more of a type of memory device and
a number of memory devices included in the local memory
114. For example, the encode data module 116 establishes
the decode threshold parameter as 10 when the local
memory 114 includes 10 memory devices. As another
example, the encode data module 116 establishes the decode
threshold parameter as 5 and the pillar width parameter as 21
when the local memory 114 includes three memory devices
and a local memory performance characteristic indicates a
below average data retrieval reliability level.

The store slices module 118, when operable within the
computing device, causes the computing device to store a
number of encoded data slices 126 of the set of encoded data
slices 124 in the local memory 114, wherein the number is
based on the decode threshold parameter and is less than the
pillar width parameter. The storing may include selecting the
number of encoded data slices 126 and writing each of the
number of encoded data slices 126 to the local memory 114.
The store slices module 118, when operable within the
computing device 110, further causes the computing device
110 to determine the number of encoded data slices 126 by
at least one of performing a mathematical function on the
decode threshold parameter and performing a second math-
ematical function based on at least one of physical structure
of the local memory and performance characteristics of the
local memory 114. For example, the store slices module 118
determines the number of encoded data slices 126 to be the
decode threshold parameter when a physical structure of the
local memory indicates that more than a decode threshold
parameter number of memory devices are available. As
another example, the store slices module 118 determines the
number of encoded data slices 126 to be the decode thresh-
old parameter minus two when a performance characteristic
of the local memory 114 indicates below average perfor-
mance. As yet another example, the store slices module 118
determines the number of encoded data slices 126 to be the
decode threshold parameter plus three when a physical
structure of the local memory 114 indicates that less than a
decode threshold parameter number of memory devices are
available.

The encode data module 116, when operable within the
computing device 110, further causes the computing device
110 to encode the data utilizing the dispersed storage error
coding function to produce a plurality of sets of encoded
data slices, which includes the set of encoded data slices.
The store slices module 118, when operable within the
computing device 110, further causes the computing device
110 to determine, in accordance with a set storage protocol,
the number of encoded data slices of one or more sets of the
plurality of sets of encoded data slices. For example, the
store slices module 118 determines a common number of
encoded data slices for each set of the plurality of sets of
encoded data slices when a set storage protocol indicates to
utilize a common number. As another example, the store
slices module 118 determines a unique number of encoded
data slices for each set of the plurality of sets of encoded data
slices when a set storage protocol indicates to utilize a
unique number for each set of encoded data slices.

The store slices module 118 further functions to store the
number of encoded data slices 126 by selecting the number
of encoded data slices 126 from the set of encoded data
slices 124 based on the dispersed storage error coding
function and issuing a number of write requests to the local
memory 114 for the number of encoded data slices 126. For
example, the store slices module 118 selects the number of
encoded data slices 126 aligned with subsequent decoding of
the decode threshold parameter number of encoded data

US 9,471,427 B2

15

slices to improve recovery latency time. For instance, the
store slices module 118 selects the number of encoded data
slices associated with a first decode threshold parameter
number of pillars when a unity matrix is used within a
generator matrix of the dispersed storage error coding func-
tion.

The output remaining slices module 120, when operable
within the computing device 110, causes the computing
device 110 to output remaining encoded data slices 128 of
the set of encoded data slices 124 to the DSN memory 22.
The outputting may include selecting the remaining encoded
data slices 128 (e.g., pillar width—number) and sending the
remaining encoded data slices 128 to the DSN memory 22.
The output remaining slices module 120 further functions to
output the remaining encoded data slices 128 by sending the
remaining encoded data slices 128 to the DS processing unit
16; or (e.g., the DS processing unit 16 directly stores slices
or encodes new slices for storage in the DSN memory 22)
sending the data 122 and the number to the DS processing
unit 16, wherein the DS processing unit 16 encodes the data
122 utilizing the dispersed storage error coding function to
produce another set of encoded data slices, identifies the
remaining encoded data slices 128 from the other set of
encoded data slices based on the number and the a set by set
basis, for the plurality, or for groupings of the plurality, and
outputs the remaining encoded data slices 128 to the DSN
memory 22; and updating an encoded data slice mapping.
The updating of the encoded data slice mapping includes
listing identities of one or more of the remaining encoded
data slices 128, a DSN source name received from the DS
processing unit 16, and a corresponding identity of the DS
processing unit 16.

The outputting remaining encoded data slices 128 further
includes one or more of selecting a memory of the DSN
memory 22 based on one or more DSN memory perfor-
mance characteristics (e.g., DSN memory utilization, DSN
memory data retrieval reliability, DSN memory data
retrieval latency; selecting further includes selecting based
on at least one of a security requirement, a predetermination,
and a message), sending a write encoded data slice request
to the at least one memory for each encoded data slice of the
remaining encoded data slices 128, wherein each write
encoded data slice request includes a corresponding encoded
data slice of the remaining encoded data slices 128, and
updating an encoded data slice mapping. (e.g., list identities
of the remaining encoded data slices 128 and corresponding
identities of the selected at least one memory)

FIG. 7B is a flowchart illustrating an example of storing
data. The method begins at step 130 where a processing
module (e.g., of a computing device) encodes data utilizing
a dispersed storage error coding function to produce a set of
encoded data slices, wherein the dispersed storage error
coding function includes a decode threshold parameter and
a pillar width parameter. The encoding the data further
includes establishing the decode threshold parameter and the
pillar width parameter based on one or more of physical
characteristics of the local memory and a local memory
performance characteristic. Alternatively, or in addition to,
the processing module encodes the data utilizing the dis-
persed storage error coding function to produce a plurality of
sets of encoded data slices, which includes the set of
encoded data slices.

The method continues at step 132 where the processing
module determines the number of encoded data slices by at
least one of performing a mathematical function on the
decode threshold parameter and performing a second math-
ematical function based on at least one of physical structure

10

15

20

25

30

35

40

45

50

55

60

65

16

of the local memory and performance characteristics of the
local memory. Alternatively, or in addition to, the processing
module determines, in accordance with a set storage proto-
col, the number of encoded data slices of one or more sets
of the plurality of sets of encoded data slices when the data
is encoded to produce the plurality of sets of encoded data
slices.

The method continues at step 134 where the processing
module stores a number of encoded data slices of the set of
encoded data slices in a local memory, wherein the number
is based on the decode threshold parameter and is less than
the pillar width parameter. The storing the number of
encoded data slices further includes selecting the number of
encoded data slices from the set of encoded data slices based
on the dispersed storage error coding function and issuing a
number of write requests to the local memory for the number
of encoded data slices.

The method continues at step 136 where the processing
module outputs remaining encoded data slices of the set of
encoded data slices to dispersed storage network (DSN)
memory. The outputting remaining encoded data slices
further includes sending the remaining encoded data slices
to a dispersed storage processing unit or sending the data and
the number to a dispersed storage (DS) processing unit,
wherein the DS processing unit encodes the data utilizing
the dispersed storage error coding function to produce
another set of encoded data slices, identifying the remaining
encoded data slices from the other set of encoded data slices
based on the number and the a set by set basis, for the
plurality, or for groupings of the plurality and outputting the
remaining encoded data slices to the DSN memory; and
updating an encoded data slice mapping. The outputting
remaining encoded data slices further includes one or more
of selecting a memory of the DSN memory based on one or
more DSN memory performance characteristics, sending a
write encoded data slice request to the at least one memory
for each encoded data slice of the remaining encoded data
slices, wherein each write encoded data slice request
includes a corresponding encoded data slice of the remain-
ing encoded data slices, and updating an encoded data slice
mapping.

FIG. 7C is a schematic block diagram of another embodi-
ment of a computing system that includes a computing
device 140, a dispersed storage (DS) processing unit 16, and
a dispersed storage network (DSN) memory 22. The DSN
memory 22 includes one or more of a secondary magnetic
drive memory, a computing device memory, a user device
memory, and at least one set of DS units. The computing
device 140 includes a DS module 142 and a local memory
114. The local memory 114 may include one or more
memory devices, wherein each memory device includes one
or more of a flash memory 102, a magnetic drive memory
104, a primary magnetic drive memory, a computing device
memory, a local user device memory, a solid-state memory,
and an optical memory. Alternatively, the local memory 114
may include memory associated with two or more comput-
ing devices 140. The DS module 142 includes a receive
request module 144, an issue local requests module 146,
receive local slices module 148, an issue DSN requests
module 150, and a decode slices module 152. The receive
request module 144, when operable within the computing
device 140, causes the computing device 140 to receive a
retrieval request 154 for data 122, wherein the data 122 is
encoded utilizing a dispersed storage error coding function
to produce a set of encoded data slices 124, wherein a
number of encoded data slices 126 of the set of encoded data
slices 124 are stored in the local memory 114 and remaining

US 9,471,427 B2

17
encoded data slices 128 of the set of encoded data slices 124
are stored in the DSN memory 22.

The issue local requests module 146, when operable
within the computing device 140, causes the computing
device 140 to issue a number of data read requests 156 to the
local memory 114 for retrieval of the number of encoded
data slices 126. The issue local requests module 146 func-
tions to issue the number of data read requests 156 by
determining the number of data read requests 156 by at least
one of performing a number look up operation (e.g., from a
previous storage sequence), performing a mathematical
function on a decode threshold parameter, and performing a
second mathematical function based on at least one of
physical structure of the local memory and performance
characteristics of the local memory, wherein the dispersed
storage error coding function includes a decode threshold
parameter and a pillar width parameter.

The receive local slices module 148, when operable
within the computing device 140, causes the computing
device 140 to determine whether a decode threshold number
of encoded data slices have been received from the local
memory 114. The receive local slices module 148 functions
to determine whether a decode threshold number of encoded
data slices have been received by one of determining that the
decode threshold number of encoded data slices have not
been received when the number of data read requests 156 is
less than a decode threshold parameter and when the number
of data read requests 156 is greater than or equal to the
decode threshold parameter decode threshold, determining
whether the decode threshold number of encoded data slices
have been received within a given time frame.

When the decode threshold number of encoded data slices
have not been received (e.g., within a time period) from the
local memory 114, the issue DSN requests module 150,
when operable within the computing device 140, causes the
computing device 140 to issue one or more data read
requests 158 to the DSN memory 22 (e.g., directly to the
DSN memory 22 or via the DS processing unit 16) for
retrieving one or more of the remaining encoded data slices
128. The issue DSN requests module 150 functions to issue
the one or more data read requests 158 to the DSN memory
22 by selecting the one or more of the remaining encoded
data slices 128 based on one or more of an encoded data slice
mapping retrieval, a query, a message, and the data retrieval
request. In addition, the issue DSN requests module 150
sends the one or more data read requests 158 to the DSN
memory 22. When the decode threshold number of encoded
data slices have been received (e.g., directly from the DSN
memory 22 to the decode slices module 152 or via the DS
processing unit 16), the decode slices module 152, when
operable within the computing device 140, causes the com-
puting device 140 to decode the decode threshold number of
encoded data slices using the dispersed storage error coding
function to reproduce the data 122.

FIG. 7D is a flowchart illustrating an example of retriev-
ing data. The method begins at step 160 where a processing
module (e.g., of a computing device) receives a retrieval
request for data, wherein the data is encoded utilizing a
dispersed storage error coding function to produce a set of
encoded data slices, wherein a number of encoded data
slices of the set of encoded data slices are stored in a local
memory and remaining encoded data slices of the set of
encoded data slices are stored in dispersed storage network
(DSN) memory.

The method continues at step 162 where the processing
module issues a number of data read requests to the local
memory for retrieval of the number of encoded data slices.

10

15

20

25

30

35

40

45

50

55

60

65

18

The issuing the number of data read requests includes
determining the number of data read requests by at least one
of performing a number look up operation, performing a
mathematical function on a decode threshold parameter, and
performing a second mathematical function based on at least
one of physical structure of the local memory and perfor-
mance characteristics of the local memory, wherein the
dispersed storage error coding function includes a decode
threshold parameter and a pillar width parameter.

The method continues at step 164 where the processing
module determines whether a decode threshold number of
encoded data slices have been received from the local
memory. The determining whether a decode threshold num-
ber of encoded data slices have been received includes one
of determining that the decode threshold number of encoded
data slices have not been received when the number of data
read requests is less than a decode threshold parameter and
when the number of data read requests is greater than or
equal to the decode threshold parameter decode threshold,
determining whether the decode threshold number of
encoded data slices have been received within a given time
frame. The method branches to step 168 when the process-
ing module determines that the decode threshold number of
encoded data slices have been received. The method con-
tinues to step 166 when the processing module determines
that the decode threshold number of encoded data slices
have not been received (e.g., within a given time period).

The method continues at step 166 where the processing
module issues one or more data read requests to the DSN
memory for retrieving one or more of the remaining encoded
data slices. The issuing the one or more data read requests
to the DSN memory includes selecting the one or more of
the remaining encoded data slices based on one or more of
an encoded data slice mapping retrieval, a query, a message,
and the data retrieval request. When the decode threshold
number of encoded data slices have been received, the
method continues at step 168 where the processing module
decodes the decode threshold number of encoded data slices
using the dispersed storage error coding function to repro-
duce the data.

FIG. 8A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing
device 170 and a dispersed storage network (DSN) memory
22. The DSN memory 22 includes one or more of a
secondary magnetic drive memory, a computing device
memory, a user device memory, and at least one set of DS
units. The computing device 170 includes a DS module 172
and a local memory 174. The local memory 174 may include
one or more memory devices, wherein each memory device
includes one or more of a flash memory 102, a magnetic
drive memory 104, a primary magnetic drive memory, a
computing device memory, a local user device memory, a
solid-state memory, and an optical memory. The DS module
172 includes a store data files module 176, a determine pillar
adjustment module 178, and a contract pillars module 180.

The store data files module 176, when operable within the
computing device 170, causes the computing device 170 to
store data files 182 utilizing a dispersed storage error coding
function, wherein a data file of the data files is encoded using
the dispersed storage error coding function to produce a
plurality of sets of encoded data slices 184, wherein the
plurality of sets of encoded data slices 184 is stored in
memory, and wherein the dispersed storage error coding
function includes a pillar width parameter and a decode
threshold parameter, where the pillar width parameter is at
least 1.8 times the decode threshold parameter (e.g., a pillar
width parameter of 100 and a decode threshold parameter of

US 9,471,427 B2

19

10). The memory includes one or more of the local memory
174 and the DSN memory 22. The store data files module
176, when operable within the computing device 170, fur-
ther causes the computing device 170 to encode a subse-
quent data file utilizing a decreased pillar width parameter
186 (e.g., 60), the decode threshold parameter, and the
dispersed storage error coding function to produce a subse-
quent plurality of sets of encoded data slices and store the
subsequent plurality of sets of encoded data slices in the
memory.

The determine pillar adjustment module 178, when oper-
able within the computing device 170, causes the computing
device 170 to determine whether to adjust the pillar width
parameter based one or more memory performance charac-
teristics 188 (e.g., availability and/or reliability). The deter-
mine pillar adjustment module 178 functions to determine to
decrease the pillar width parameter by determining a
memory utilization indicator associated with the memory
(e.g., includes obtaining the memory utilization indicator
based on one or more of a lookup, a query, a test, and
receiving a message), determining a memory reliability
indicator associated with the memory, and when the memory
utilization indicator is unfavorable and the memory reliabil-
ity indicator is favorable, indicating a decrease of the pillar
width parameter. The memory utilization indicator includes
one or more of an amount of available memory, an amount
of utilized memory, available memory percentage of
memory capacity, and utilized memory percentage of
memory capacity. The memory reliability indicator includes
one or more of an access latency level of the local memory,
a rebuilding frequency indicator, and a data retrieval reli-
ability level of the memory. For example, the determine
pillar adjustment module 178 decreases the pillar width
parameter from 100 to 60 when an amount of utilized
memory is greater than a memory threshold and a data
retrieval reliability level compares favorably to a reliability
threshold.

When the pillar width parameter is to be decreased, the
contract pillars module 180, when operable within the
computing device 170, causes the computing device 170 to
identify one or more pillars within the memory to delete to
produce one or more identified pillars (e.g., and produce the
decreased pillar width parameter 186), identify encoded data
slices of one or more of the data files stored in the one or
more identified pillars to produce identified encoded data
slices, and delete the identified encoded data slices (e.g., by
sending delete encoded data slice requests 190 to the DSN
memory 22 with regards to the identified encoded data
slices). The contract pillars module 180 functions to identity
the one or more pillars within the memory to delete by
determining an amount of memory space to reclaim based
on at least one of a memory utilization indicator and a
memory reliability indicator, identifying one or more of the
data files based on data file criteria (e.g., user identifier,
minimum file size, a file priority indicator), and determining
a number of pillars to be deleted based on the amount of
memory space to reclaim and the identified one or more of
the data files. For example, the contract pillars module 180
identifies pillars 61-100 to delete corresponding to 50 data
files associated with a lower than average file priority
indicator value to reclaim 100 GB of memory space.

The contract pillars module 180 functions to delete the
identified encoded data slices by reclaiming memory space
of the deleted encoded data slices and updating pillar
mapping of the memory in accordance with the decreasing
of the pillar width parameter and the reclaimed memory
space (e.g., reassign slice name ranges per memory). The

10

15

20

25

30

35

40

45

50

55

60

65

20

contract pillars module 180 functions to identify the encoded
data slices by identifying the one or more of the data files
(e.g., based on file priority) and for each of the one or more
identified data files determining which of the encoded data
slices of a respective plurality of sets of encoded data slices
are stored in the one or more identified pillars to produce
data file specific encoded data slices, wherein the identified
encoded data slices includes the data file specific encoded
data slices for each of the one or more identified data files.

FIG. 8B is a flowchart illustrating an example of con-
tracting data storage. The method begins at step 200 where
a processing module (e.g., of a computing device) stores
data files utilizing a dispersed storage error coding function,
wherein a data file of the data files is encoded using the
dispersed storage error coding function to produce a plural-
ity of sets of encoded data slices, wherein the plurality of
sets of encoded data slices is stored in memory, and wherein
the dispersed storage error coding function includes a pillar
width parameter and a decode threshold parameter, where
the pillar width parameter is at least 1.8 times the decode
threshold parameter. The memory includes one or more of a
local memory and a dispersed storage network (DSN)
memory. Alternatively, or in addition to, processing module
encodes a subsequent data file utilizing the decreased pillar
width parameter, the decode threshold parameter, and the
dispersed storage error coding function to produce a subse-
quent plurality of sets of encoded data slices and stores the
subsequent plurality of sets of encoded data slices in the
memory.

The method continues at step 202 where the processing
module determines whether to adjust the pillar width param-
eter based on one or more memory performance character-
istics. The determining to decrease the pillar width param-
eter includes determining a memory utilization indicator
associated with the memory, determining a memory reliabil-
ity indicator associated with the memory, and when the
memory utilization indicator is unfavorable and the memory
reliability indicator is favorable, indicating a decrease of the
pillar width parameter.

When the pillar width parameter is to be decreased, the
method continues at step 204 where the processing module
identifies one or more pillars within the memory to delete to
produce one or more identified pillars. The identifying one
or more pillars within the memory to delete includes deter-
mining an amount of memory space to reclaim based on at
least one of a memory utilization indicator and a memory
reliability indicator, identifying one or more of the data files
based on data file criteria, and determining a number of
pillars to be deleted based on the amount of memory space
to reclaim and the identified one or more of the data files.

The method continues at step 206 where the processing
module identifies encoded data slices of one or more of the
data files stored in the one or more identified pillars to
produce identified encoded data slices. The identifying
encoded data slices includes identifying the one or more of
the data files and for each of the one or more identified data
files, determining which of the encoded data slices of a
respective plurality of sets of encoded data slices are stored
in the one or more identified pillars to produce data file
specific encoded data slices, wherein the identified encoded
data slices includes the data file specific encoded data slices
for each of the one or more identified data files.

The method continues at step 208 where the processing
module deletes the identified encoded data slices. The delet-
ing the identified encoded data slices includes reclaiming
memory space of the deleted encoded data slices and updat-

US 9,471,427 B2

21

ing pillar mapping of the memory in accordance with the
decreasing of the pillar width parameter and the reclaimed
memory space.

FIG. 9A is a schematic block diagram of another embodi-
ment of a computing system that includes a computing
device 220 and a dispersed storage network (DSN) memory
22. The DSN memory 22 includes one or more of a
secondary magnetic drive memory, a computing device
memory, a user device memory, and at least one set of DS
units. The computing device 220 includes a DS module 222
and a local memory 174. The local memory 174 may include
one or more memory devices, wherein each memory device
includes one or more of a flash memory 102, a magnetic
drive memory 104, a primary magnetic drive memory, a
computing device memory, a local user device memory, a
solid-state memory, and an optical memory. The DS module
222 includes a store data files module 224, a determine pillar
adjustment module 226, and an expand pillars module 228.

The store data files module 224, when operable within a
computing device 220, causes the computing device 220 to
store data files 182 utilizing a dispersed storage error coding
function, wherein a data file of the data files is encoded using
the dispersed storage error coding function to produce a
plurality of sets of encoded data slices 184, wherein the
plurality of sets of encoded data slices is stored in memory,
and wherein the dispersed storage error coding function
includes a pillar width parameter and a decode threshold
parameter, where the pillar width parameter is greater than
the decode threshold parameter (e.g., a pillar width param-
eter of 20 and a decode threshold parameter of 10). The
memory includes one or more of the local memory 174 and
a DSN memory 22. The store data files module 224, when
operable within the computing device 220, further causes
the computing device 220 to encode a subsequent data file
utilizing an increased pillar width parameter 230 (e.g., 60),
the decode threshold parameter, and the dispersed storage
error coding function to produce a subsequent plurality of
sets of encoded data slices and store the subsequent plurality
of sets of encoded data slices in the memory.

The determine pillars adjustment module 226, when oper-
able within the computing device 220, causes the computing
device 220 to determine whether to adjust the pillar width
parameter based one or more memory performance charac-
teristics 188 (e.g., memory availability and/or memory reli-
ability). The determine pillar adjustment module 226, when
operable within the computing device 220, further causes
the computing device 220 to determine to increase the pillar
width parameter by one or more of determining a memory
utilization indicator associated with the memory, determin-
ing a memory reliability indicator associated with the
memory, and when the memory utilization indicator is
favorable and the memory reliability indicator is unfavor-
able, indicating an increase of the pillar width parameter.
The memory utilization indicator includes one or more of an
amount of available memory, an amount of utilized memory,
available memory percentage of memory capacity, and uti-
lized memory percentage of memory capacity. The memory
reliability indicator includes one or more of an access
latency level of the local memory, a rebuilding frequency
indicator, and a data retrieval reliability level of the memory.
For example, the determine pillar adjustment module 226
increases the pillar width parameter from 20 to 60 when an
amount of utilized memory is less than a memory threshold
and a data retrieval reliability level compares unfavorably to
a reliability threshold.

When the pillar width parameter is to be increased, the
expand pillars module 228, when operable within the com-

10

15

20

25

30

35

40

45

50

55

60

65

22

puting device 220, causes the computing device 220 to
determine a number of additional pillars to produce the
increased pillar width parameter 230, identify one or more
of the data files based on data file criteria (e.g., by a user
identifier, a priority indicator), and for each of the one or
more data files encode a data file of the one or more data files
utilizing the increased pillar width parameter, the decode
threshold parameter, and the dispersed storage error coding
function to produce a plurality of subsets of encoded data
slices 232 relating to the number of additional pillars (e.g.,
retrieve data from a decode threshold number of slices, and
use new rows of an extended generator matrix to produce the
plurality of subsets of encoded data slices), and store the
plurality of subsets of encoded data slices 232 in the memory
corresponding to the additional pillars.

The expand pillars module 228, when operable within the
computing device, further causes the computing device to
determine the number of additional pillars by one or more of
determining a level of unfavorability of the memory reli-
ability indicator and determining the number of additional
pillars based on the level of unfavorability. For example, the
expand pillars module 228 determines 40 additional pillars
(e.g., 21-60) when a level of memory reliability is much
lower than a low reliability threshold. The expand pillars
module 228 further functions to store the plurality of subsets
of'encoded data slices 232 by updating pillar mapping of the
memory in accordance with the increasing of the pillar width
parameter (e.g., wider slice name range assigned to
memory).

FIG. 9B is a flowchart illustrating an example of expand-
ing data storage. The method begins at step 240 where a
processing module (e.g., of a computing device) stores data
files utilizing a dispersed storage error coding function,
wherein a data file of the data files is encoded using the
dispersed storage error coding function to produce a plural-
ity of sets of encoded data slices, wherein the plurality of
sets of encoded data slices is stored in memory, and wherein
the dispersed storage error coding function includes a pillar
width parameter and a decode threshold parameter, where
the pillar width parameter is greater than the decode thresh-
old parameter. The memory includes one or more of a local
memory and a dispersed storage network (DSN) memory.
Alternatively, or in addition to, the processing module
encodes a subsequent data file utilizing an increased pillar
width parameter, the decode threshold parameter, and the
dispersed storage error coding function to produce a subse-
quent plurality of sets of encoded data slices and stores the
subsequent plurality of sets of encoded data slices in the
memory.

The method continues at step 242 where the processing
module determines whether to adjust the pillar width param-
eter based one or more memory performance characteristics
(e.g., memory availability and/or memory reliability). The
determining to increase the pillar width parameter includes
determining a memory utilization indicator associated with
the memory, determining a memory reliability indicator
associated with the memory, and when the memory utiliza-
tion indicator is favorable and the memory reliability indi-
cator is unfavorable, indicating an increase of the pillar
width parameter.

When the pillar width parameter is to be increased, the
method continues at step 244 where the processing module
determines a number of additional pillars to produce an
increased pillar width parameter. The determining the num-
ber of additional pillars includes determining a level of
unfavorability of the memory reliability indicator and deter-
mining the number of additional pillars based on the level of

US 9,471,427 B2

23

unfavorability. The method continues at step 246 where the
processing module identifies one or more of the data files
based on data file criteria (e.g., based on a user identifier, a
priority indicator). For example, the processing module
identifies 1000 data files that are associated with a high
priority indicator associated with a requirement for high data
retrieval reliability.

For each of the one or more data files, the method
continues at step 248 where the processing module encodes
a data file of the one or more data files utilizing the increased
pillar width parameter, the decode threshold parameter, and
the dispersed storage error coding function to produce a
plurality of subsets of encoded data slices relating to the
number of additional pillars (e.g., retrieve data from a
decode threshold number of encoded data slices retrieved
from the memory, matrix multiply the data by new rows of
an extended generator matrix to produce the plurality of
subsets of encoded data slices). The method continues at
step 250 where the processing module stores the plurality of
subsets of encoded data slices in the memory corresponding
to the additional pillars. The storing the plurality of subsets
of encoded data slices includes updating pillar mapping of
the memory in accordance with the increasing of the pillar
width parameter (e.g., wider slice name range assigned to
memory).

FIG. 10A is a schematic block diagram of another
embodiment of a computing system that includes a comput-
ing device 260, a local area network (LAN) 262, and a wide
area network (WAN) 264. The WAN 264 includes a dis-
persed storage network (DSN) memory 22. The DSN
memory 22 includes one or more of a secondary magnetic
drive memory, a computing device memory, a user device
memory, and at least one set of DS units. The LAN 262
includes a plurality of mobile device memories 266 and a
plurality of fixed device memories 268. The fixed device
memory 268 is substantially permanently associated with
the LAN 262 whereas the mobile device memory 266 may
become disassociated with the LAN 262 from time to time.
For example, a first mobile device memory 266 includes a
smart phone that is utilized in association with the LAN 262
when the first mobile device 266 is proximally associated
with a LAN 262. As another example, a first fixed device
memory 268 is associated with a cable set-top box of a home
based LAN 262. The mobile device memory 266 and the
fixed device memory 268 may include one or more memory
devices, wherein each memory device includes one or more
of a flash memory 102, a magnetic drive memory 104, a
primary magnetic drive memory, a computing device
memory, a local device memory, a solid-state memory, and
an optical memory.

The mobile device memory 266 includes mobile device
available memory 266 when at least some of the one or more
memory devices associated with the mobile device memory
266 are available for storage access. The fixed device
memory 268 includes fixed device available memory 268
when at least some of the one or more memory devices
associated with the fixed device memory 268 are available
for storage access. The computing device 260 includes a
dispersed storage (DS) module 270 and may include one or
more of the mobile device memory 266 and the fixed device
memory 268. The DS module 270 includes an encode
module 272, a select LAN width module 274, a select WAN
width module 276, a receive request module 278, a request
LAN slices module 280, a decode module 282, and a request
WAN slices module 284.

The encode module 272, when operable within the com-
puting device 260, causes the computing device 260 to

10

15

20

25

30

35

40

45

50

55

60

65

24

encode, in accordance with a dispersed storage error coding
function, data 286 based on a decode threshold parameter
and a pillar width parameter to produce a set of encoded data
slices 288. The encode module 272 further functions to
encode the data 286 by determining the decode threshold
parameter based on a minimum quantity of the fixed device
available memory 268 and determining the pillar width
parameter based on the minimum quantity of the fixed
device available memory 268 and a minimum quantity of the
mobile device available memory 266. For example, the
encode module 272 determines the decode threshold param-
eter to be 3 when a quantity of the fixed device available
memory 268 is 3 fixed devices 268. As another example, the
encode module 272 determines the decode threshold param-
eter to be 10 when a quantity of the fixed device available
memory 268 is 15 fixed devices 268 and a decode threshold
parameter minimum number is 10. As yet another example,
the encode module 272 determines the pillar width param-
eter to be 5 when the quantity of the fixed device available
memory 268 is 3 fixed devices 268 and a quantity of the
mobile device available memory 266 is 3. As a still further
example, the encode module 272 determines the pillar width
parameter to be 16 when the quantity of the fixed device
available memory 268 is 15 fixed devices 268, a quantity of
the mobile device available memory 266 is 12, and a pillar
width parameter minimum number is 16.

The select LAN width module 274, when operable within
the computing device 260, causes the computing device 260
to select a local area network (LAN) pillar width value of
encoded data slices 290 of the set of encoded data slices 288
for storage in LAN available memories (e.g., available
mobile device memories 266 and/or available fixed device
memories 268), wherein the LAN pillar width value is based
on the decode threshold parameter, the pillar width param-
eter, and quantities of the LAN available memories and
wherein the LAN pillar width value is equal to or greater
than a value of the decode threshold parameter. The LAN
available memories includes mobile device available
memory 266 and fixed device available memory 268. The
select LAN width module 274 may select the LAN pillar
width value as less than a value of the pillar width parameter.
For example the select LAN width module 274 selects a
LAN pillar width value of 12 when the pillar width param-
eter is 16.

The select WAN width module 276, when operable within
the computing device 260, causes the computing device 260
to select a wide area network (WAN) pillar width value of
encoded data slices 292 of the set of encode data slices 288
for storage in the DSN memory 22 of the wide area network
264, wherein the WAN pillar width value is based on the
decode threshold parameter and the pillar width parameter
and wherein the WAN pillar width value is equal to or
greater than the value of the decode threshold parameter.
The select WAN width module 276 may select the WAN
pillar width value as less than a value of the pillar width
parameter. For example the select WAN width module 276
selects a WAN pillar width value of 12 when the pillar width
parameter is 16.

The receive request module 278, when operable within
the computing device 260, causes the computing device 260
to receive a request 294 to retrieve the data 286. The request
LAN slices module 280, when operable within the comput-
ing device 260, causes the computing device 260 to deter-
mine whether the LAN is accessible (e.g., based on a query
to one or more mobile device memories 266 and/or one or
more fixed device memories 268), and when the LAN is
accessible, request the LAN pillar width value of encoded

US 9,471,427 B2

25

data slices from the LAN memories (e.g., sending LAN
slices requests 296 to the LAN memories). For example, the
request LAN slices module 280 sends 12 LLAN slice requests
296 to the LAN memories when a LAN pillar width value
is 12.

The decode module 282, when operable within the com-
puting device 260, causes the computing device 260 to,
when at least a decode threshold parameter of the LAN pillar
width value of encoded data slices 290 have been received,
decode, in accordance with the dispersed storage error
coding function to produce the data 286. The request WAN
slices module 284, when operable within the computing
device 260, causes the computing device 260 to, when the at
least the decode threshold parameter of the LAN pillar width
value of encoded data slices have not been received, request
at least one of the WAN pillar width value of encoded data
slices 292 from the DSN memory 22 (e.g., via at least one
WAN slice request 298). For example, the request WAN
slices module 284 sends three WAN slice requests 298 to the
DSN memory 22 when the decode threshold parameter is 10
and 7 LAN slices 290 have been received. When the LAN
262 is not accessible, the request WAN slices module 284
requests the WAN pillar width value of encoded data slices
292 from the DSN memory 22. For example, the request
WAN slices module 284 sends 12 WAN slice requests 298
to the DSN memory 22 when the LAN 262 is not accessible.

FIG. 10B is a flowchart illustrating an example of access-
ing data. The method begins at step 300 where a processing
module (e.g., of a computing device) encodes, in accordance
with a dispersed storage error coding function, data based on
a decode threshold parameter and a pillar width parameter to
produce a set of encoded data slices. The encoding the data
includes determining the decode threshold parameter based
on a minimum quantity of the fixed device available
memory and determining the pillar width parameter based
on the minimum quantity of the fixed device available
memory and a minimum quantity of the mobile device
available memory.

The method continues at step 302 where the processing
module selects a local area network (LAN) pillar width
value of encoded data slices of the set of encoded data slices
for storage in LAN available memories, wherein the LAN
pillar width value is based on the decode threshold param-
eter, the pillar width parameter, and quantities of the LAN
available memories and wherein the LAN pillar width value
is equal to or greater than a value of the decode threshold
parameter. The LAN available memories includes mobile
device available memory and fixed device available
memory. The LAN pillar width value may be less than a
value of the pillar width parameter to provide data retrieval
capability without utilizing LAN memories to store all the
slices.

The method continues at step 304 where the processing
module selects a wide area network (WAN) pillar width
value of encoded data slices of the set of encode data slices
for storage in a dispersed storage network (DSN) memory of
a wide area network, wherein the WAN pillar width value is
based on the decode threshold parameter and the pillar width
parameter and wherein the WAN pillar width value is equal
to or greater than the value of the decode threshold param-
eter. The WAN pillar width value may be less than a value
of the pillar width parameter to provide data retrieval
capability without utilizing the DSN memory to store all the
slices.

The method continues at step 306 where the processing
module receives a request to retrieve the data. The method
continues at step 308 where the processing module deter-

10

15

20

25

30

35

40

45

50

55

60

65

26

mines whether the LAN is accessible. For example, the
processing module initiates a query to a memory device
associated with the LAN. The method branches to step 312
when the processing module determines that the LAN is
accessible. The method continues to step 310 when the
processing module determines that the LAN is not acces-
sible. The method continues at step 310 where the process-
ing module requests the WAN pillar width value of encoded
data slices from the DSN memory when the LAN is not
accessible. The method branches to step 316.

The method continues at step 312 where the processing
module requests the LAN pillar width value of encoded data
slices from the LAN memories when the LAN is accessible.
When the at least the decode threshold parameter of the
LAN pillar width value of encoded data slices have not been
received, the method continues at step 314 where the pro-
cessing module requests at least one (e.g., enough to provide
a decode threshold number of encoded data slices) of the
WAN pillar width value of encoded data slices from the
DSN memory. The method continues at step 316, when at
least a decode threshold parameter of the LAN pillar width
value of encoded data slices have been received, where the
processing module decodes, in accordance with the dis-
persed storage error coding function to produce the data.

FIG. 10C is a schematic block diagram of another
embodiment of a computing system that includes a comput-
ing device 320, a local area network (LAN) 262, and a wide
area network (WAN) 264. The WAN 264 includes a dis-
persed storage network (DSN) memory 22. The DSN
memory 22 includes one or more of a secondary magnetic
drive memory, a computing device memory, a user device
memory, and at least one set of DS units. The LAN 262
includes a plurality of mobile device memories 266 and a
plurality of fixed device memories 268. For example, a
laptop computer includes a mobile device memory 266. As
another example, desktop computer includes a fixed device
memory 268. The mobile device memory 266 and the fixed
device memory 268 may include one or more memory
devices, wherein each memory device includes one or more
of a flash memory 102, a magnetic drive memory 104, a
primary magnetic drive memory, a computing device
memory, a local device memory, a solid-state memory, and
an optical memory.

The mobile device memory 266 includes mobile device
available memory 266 when at least some of the one or more
memory devices associated with the mobile device memory
266 are available for storage access. The fixed device
memory 268 includes fixed device available memory 268
when at least some of the one or more memory devices
associated with the fixed device memory 268 are available
for storage access. The computing device 320 includes a
dispersed storage (DS) module 322 and may include one or
more of the mobile device memory 266 and the fixed device
memory 268. The DS module 322 functions to set up the
LAN 262 and WAN 264 and includes a determine LAN
memories module 324, an establish parameters module 326,
a determine LAN pillar width module 328, and a determine
WAN pillar width module 330.

The determine LAN memories module 324, when oper-
able within the computing device 320, causes the computing
device 320 to determine LAN available memories of the
LAN 262 environment. The determine LAN memories mod-
ule 324 functions to determine the LAN available memories
by identifying one or more mobile device available memo-
ries 266 and identifying one or more fixed device available
memories 268. For example, the determine LAN memories
module 324 sends an availability request 332 to one or more

US 9,471,427 B2

27

mobile device memories 266 and one or more fixed device
memories 268 and receives availability responses 334 which
identifies LAN available memories.

The establish parameters module 326, when operable
within the computing device 320, causes the computing
device 320 to establish a decode threshold parameter 336
and a pillar width parameter 338 of a dispersed storage error
coding function based on quantities of the LAN available
memories. The establish parameters module 326 functions
to establish the decode threshold parameter 336 and the
pillar width parameter 338 by determining the decode
threshold parameter 336 based on a minimum quantity of the
fixed device available memory and determining the pillar
width parameter 338 based on the minimum quantity of the
fixed device available memory and a minimum quantity of
the mobile device available memory. For example, the
establish parameters module 326 establishes a decode
threshold parameter 336 to be 10 and a pillar width param-
eter 338 to be 16 when a minimum quantity of the fixed
device available memory is 10, eight mobile device memo-
ries 266 are available, and 12 fixed device memories 268 are
available.

The determine LAN pillar width module 328, when
operable within the computing device 320, causes the com-
puting device 320 to determine a LAN pillar width value 340
based on the decode threshold parameter 336, the pillar
width parameter 338, and the quantities of the LAN avail-
able memories, wherein the LAN pillar width value 340 is
equal to or greater than a value of the decode threshold
parameter 336. The determine LLAN pillar width module 328
is further operable to determine the LAN pillar width value
340 to be less than a value of the pillar width parameter 338.
For example, the determine L AN pillar width module 328
determines a LAN pillar width value 340 to be 12 when the
decode threshold parameter 336 is 10, the pillar width
parameter 338 is 16, and there are greater than 12 LAN
available memories.

The determine WAN pillar width module 330, when
operable within the computing device 320, causes the com-
puting device 320 to determine a WAN pillar width value
342 based on the decode threshold parameter 336 and the
pillar width parameter 338, wherein the WAN pillar width
value 342 is equal to or greater than the value of the decode
threshold parameter 336, wherein, for data that is encoded
into a set of encoded data slices in accordance with the
dispersed storage error coding function, the decode thresh-
old parameter 336, and the pillar width parameter 338, a
LAN pillar width value 340 of encoded data slices of the set
of encoded data slices are selected for storage in the LAN
available memories, and a WAN pillar width value 342 of
encoded data slices of the set of encode data slices for
storage in the DSN memory 22 of the WAN 264. The
determine WAN pillar width module 330 is further operable
to determine the WAN pillar width value 342 to be less than
the value of the pillar width parameter 338. For example, the
determine WAN pillar width module 330 determines a WAN
pillar width value 342 to be 11 when the decode threshold
parameter 336 is 10 and the pillar width parameter 338 is 16.

FIG. 10D is a flowchart illustrating an example of setting
up a dispersed storage system. The method begins at step
350 where a processing module (e.g., of a computing device)
determines LAN available memories of a local area network
(LAN) environment. The determining LAN available
memories includes identifying one or more mobile device
available memories and identifying one or more fixed device
available memories. The method continues at step 352
where the processing module establishes a decode threshold

20

40

45

28

parameter and a pillar width parameter of a dispersed
storage error coding function based on quantities of the LAN
available memories. The establishing the decode threshold
parameter and the pillar width parameter includes determin-
ing the decode threshold parameter based on a minimum
quantity of the fixed device available memory and deter-
mining the pillar width parameter based on the minimum
quantity of the fixed device available memory and a mini-
mum quantity of the mobile device available memory.

The method continues at step 354 where the processing
module determines a LAN pillar width value based on the
decode threshold parameter, the pillar width parameter, and
the quantities of the LAN available memories, wherein the
LAN pillar width value is equal to or greater than a value of
the decode threshold parameter. Alternatively, the process-
ing module determines the LAN pillar width value to be less
than a value of the pillar width parameter. The method
continues at step 356 where the processing module deter-
mines a WAN pillar width value based on the decode
threshold parameter and the pillar width parameter, wherein
the WAN pillar width value is equal to or greater than the
value of the decode threshold parameter, wherein, for data
that is encoded into a set of encoded data slices in accor-
dance with the dispersed storage error coding function, the
decode threshold parameter, and the pillar width parameter,
a LAN pillar width value of encoded data slices of the set of
encoded data slices are selected for storage in the LAN
available memories, and a WAN pillar width value of
encoded data slices of the set of encode data slices for
storage in a distributed storage network (DSN) memory of
the WAN. Alternatively, the processing module determines
the WAN pillar width value to be less than the value of the
pillar width parameter.

FIG. 11 is a flowchart illustrating an example of trans-
ferring data. The method begins with step 360 where a
processing module determines whether to transfer encoded
data slices stored in a local Flash memory when detecting a
shutdown. The detecting a shutdown includes or more of
receiving a shutdown message, detecting a power failure,
detecting a processing failure, executing a query, receiving
a message, receiving a command, receiving a request, look-
ing up a predetermination, and looking up a schedule. The
determination may be based on one or more of a storage
requirement, a storage indicator, a memory type indicator, a
slice priority indicator, a data type indicator, a user identifier
(ID), a vault ID, a slice volume indicator, an estimated time
to transfer slices, and an estimated time to power off. For
example, the processing module determines to transfer the
encoded data slices when a slice priority indicator associated
with the encoded data slices compares favorably to a slice
priority threshold, and the estimated time to transfer slices
compares favorably to the estimated time to power off. The
method loops at step 360 when the processing module
determines not to transfer the encoded data slices. The
method continues to step 362 when the processing module
determines to transfer the encoded data slices.

The method continues at step 362 where the processing
module determines a group of encoded data slices stored in
the local flash memory to transfer. The group of encoded
data slices may include at least a decode threshold number
of encoded data slices per set of encoded data slices. The
determination may be based on one or more of error coding
dispersal storage function parameters, the storage require-
ment, the storage indicator, the memory type indicator, the
slice priority indicator, the data type indicator, the user ID,
the vault ID, the slice volume indicator, the estimated time
to transfer slices, and the estimated time to power off. For

US 9,471,427 B2

29

example, the processing module determines the group of
encoded data slices to include 12 encoded data slices per set
of encoded data slices when the error coding dispersal
storage option parameters includes a read threshold of 12
and a decode threshold of 10.

The method continues at step 364 where the processing
module determines where to store the group of encoded data
slices to produce at least one storage location. The storage
location may include one or more other user devices,
wherein the one or more other user devices are affiliated with
a current user device such that each of the other user devices
is associated with a storage indicator indicating a favorable
level of Flash memory capacity sufficient to store the group
of encoded data slices. The determination may be based on
one or more of an alternative memory list, a query, a
message, a size of the group of encoded data slices, a
predetermination, a lookup, a request, a command, and a
message.

The method continues at step 368 where the processing
module transfers the group of encoded data slices to the at
least one storage location. The transferring may include
retrieving the group of encoded data slices and outputting
the group of encoded data slices to the lease one storage
location. The method continues at step 370 where the
process module outputs a message indicating that the group
of encoded data slices has been transferred. The outputting
may include sending the message to one or more of another
user device, a dispersed storage (DS) processing unit, and a
DS managing unit. The processing module may receive a
subsequent shutdown message in response to sending the
message. Next, the processing module completes a final
shutdown process when receiving a shutdown message.

FIG. 12A is a flowchart illustrating an example of gen-
erating an encoded data slice storage solicitation message.
The method begins with step 372 where a processing
module determines a utilization level of a local flash
memory. The method continues at step 374 where the
processing module determines whether the utilization level
compares favorably to a utilization threshold. For example,
the processing module determines that the utilization level
compares favorably to the utilization threshold when the
utilization level is less than the utilization threshold. The
method branches to step 376 when the processing module
determines that the utilization level compares favorably to
the utilization threshold. The method loops back to step 372
when the processing module determines that the utilization
level does not compare favorably to the utilization threshold
(e.g., no storage capacity to share).

The method continues at step 376 where the processing
module generates and sends an encoded data slice storage
solicitation message to one or more other user devices. The
solicitation message includes one or more of an available
amount of memory indicator, a user device identifier (ID), a
performance history indicator, a group 1D, a vault ID, and a
one-time/on-going indicator (e.g., one-time: transfer now
only; on-going: transfer now and for subsequent transfer and
storage operations). The sending includes outputting the
data slice storage slice solicitation message to one or more
of'a random user device, an affiliated user device, a group of
affiliated user devices, one or more other user devices that
previously output a request for stories message, and a list of
targets. The method continues step 378 where the processing
module receives a plurality of encoded data slices from the
one or more other user devices. The method continues at step
380 where the processing module stores the plurality of
encoded data slices in the local flash memory. The method
may repeat back to step 372.

10

15

20

25

30

35

40

45

50

55

60

30

FIG. 12B is a flowchart illustrating an example of pro-
cessing an encoded data slice storage solicitation message
that includes similar steps to FIG. 11. The method begins at
step 382 where a processing module receives an encoded
data slice storage solicitation message from another user
device. The method continues at step 384 where the pro-
cessing module determines whether to transfer encoded data
slices that are stored in a local Flash memory. The determi-
nation may be based on one or more of the storage require-
ment, a storage indicator, a utilization level indicator, a
utilization level threshold, a permissions list, an affiliation
list, information in the solicitation message, a predetermi-
nation, a lookup, a message, a request, and a command. For
example, the processing module determines to transfer
encoded data slices when a user identifier (ID) associated
with the solicitation message compares favorably to the
permissions list and the utilization level indicator compares
unfavorably to the utilization level threshold. The method
loops back to step 382 when the processing module deter-
mines not to transfer encoded data slices. The method
continues to step 362 of FIG. 11 when the processing
module determines to transfer encoded data slices.

The method continues with step 362 of FIG. 11 where the
processing module determines a group of encoded data
slices stored in the local Flash memory to transfer. The
method continues at step 388 where the processing module
transfers the group of encoded data slices to the other user
device. The transferring includes retrieving the group of
encoded data slices from the local flash memory and out-
putting the group of encoded data slices to the other user
device.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term “associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

US 9,471,427 B2

31

As may also be used herein, the terms “processing mod-
ule”, “processing circuit”, and/or “processing unit” may be
a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor,
micro-controller, digital signal processor, microcomputer,
central processing unit, field programmable gate array, pro-
grammable logic device, state machine, logic circuitry, ana-
log circuitry, digital circuitry, and/or any device that
manipulates signals (analog and/or digital) based on hard
coding of the circuitry and/or operational instructions. The
processing module, module, processing circuit, and/or pro-
cessing unit may be, or further include, memory and/or an
integrated memory element, which may be a single memory
device, a plurality of memory devices, and/or embedded
circuitry of another processing module, module, processing
circuit, and/or processing unit. Such a memory device may
be a read-only memory, random access memory, volatile
memory, non-volatile memory, static memory, dynamic
memory, flash memory, cache memory, and/or any device
that stores digital information. Note that if the processing
module, module, processing circuit, and/or processing unit
includes more than one processing device, the processing
devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be
distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area
network). Further note that if the processing module, mod-
ule, processing circuit, and/or processing unit implements
one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory
and/or memory element storing the corresponding opera-
tional instructions may be embedded within, or external to,
the circuitry comprising the state machine, analog circuitry,
digital circuitry, and/or logic circuitry. Still further note that,
the memory element may store, and the processing module,
module, processing circuit, and/or processing unit executes,
hard coded and/or operational instructions corresponding to
at least some of the steps and/or functions illustrated in one
or more of the Figures. Such a memory device or memory
element can be included in an article of manufacture.

The present invention has been described above with the
aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these func-
tional building blocks have been arbitrarily defined for
convenience of description. Alternate boundaries could be
defined as long as the certain significant functions are
appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

10

15

20

25

30

35

40

45

50

55

60

65

32

The present invention may have also been described, at
least in part, in terms of one or more embodiments. An
embodiment of the present invention is used herein to
illustrate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example therecof. A
physical embodiment of an apparatus, an article of manu-
facture, a machine, and/or of a process that embodies the
present invention may include one or more of the aspects,
features, concepts, examples, etc., described with reference
to one or more of the embodiments discussed herein. Fur-
ther, from figure to figure, the embodiments may incorporate
the same or similarly named functions, steps, modules, etc.,
that may use the same or different reference numbers and, as
such, the functions, steps, modules, etc., may be the same or
similar functions, steps, modules, etc., or different ones.
Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time
or discrete time, and single-ended or differential. For
instance, if a signal path is shown as a single-ended path, it
also represents a differential signal path. Similarly, if a signal
path is shown as a differential path, it also represents a
single-ended signal path. While one or more particular
architectures are described herein, other architectures can
likewise be implemented that use one or more data buses not
expressly shown, direct connectivity between elements, and/
or indirect coupling between other elements as recognized
by one of average skill in the art.
The term “module” is used in the description of the
various embodiments of the present invention. A module
includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or
more functions as may be described herein. Note that, if the
module is implemented via hardware, the hardware may
operate independently and/or in conjunction software and/or
firmware. As used herein, a module may contain one or more
sub-modules, each of which may be one or more modules.
While particular combinations of various functions and
features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.
What is claimed is:
1. A method for use in a dispersed storage network (DSN)
that includes a plurality of user devices and a plurality of
dispersed storage (DS) modules, the method comprises:
storing, by non-local DSN memory, redundancy encoded
data slices of a set of encoded data slices, wherein a
data segment of a data object is dispersed storage error
encoded into the set of encoded data slices, wherein a
decode threshold number of encoded data slices is
needed to recover the data segment, and wherein the
redundancy encoded data slices corresponds to a total
number of encoded data slices of the set of encoded
data slices less the decode threshold number of encoded
data slices;
storing, by each DS processing module of a plurality of
DS processing modules, a copy of the decode threshold
number of encoded data slices in local memory asso-
ciated with a respective DS processing module;

receiving, by the plurality of DS processing modules, read
requests for the set of encoded data slices from user
devices of the plurality of user devices; and

in response to one of the read requests:

determining, by a DS processing module of the plural-
ity of DS processing modules, that at least one

US 9,471,427 B2

33

encoded data slice of the copy of the decode thresh-
old number of encoded data slices stored in a cor-
responding local memory of the DS processing mod-
ule is unavailable;

retrieving, by the DS processing module, at least one of
the redundancy encoded data slices from the non-
local DSN memory; and

processing, by the DS processing module, the one of
the read requests based on the retrieved at least one

5

of the redundancy encoded data slices and available 10

encoded data slices of the copy of the decode thresh-
old number of encoded data slices stored in the
corresponding local memory.
2. The method of claim 1 further comprises:
updating the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory by rebuilding each encoded data slice of the at
least one unavailable encoded data slice based on the
retrieved at least one of the redundancy encoded data
slices and the available encoded data slices of the copy
of the decode threshold number of encoded data slices
stored in the corresponding local memory.
3. The method of claim 1 further comprises:
updating the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory by replacing the at least one unavailable
encoded data slice with the retrieved at least one of the
redundancy encoded data slices.
4. The method of claim 1 further comprises:
in response to another one of the read requests:
determining, by another DS processing module of the
plurality of DS processing modules, that the copy of
the decode threshold number of encoded data slices
stored in the corresponding local memory of the DS
processing module is available; and
processing, by the DS processing module, the another
one of the read requests based on the copy of the
decode threshold number of encoded data slices
stored in the corresponding local memory.
5. The method of claim 1 further comprises:
updating the data segment to produce an updated data
segment,
dispersed storage error encoding the updated data seg-
ment to produce an updated set of encoded data slices;
storing, by the non-local DSN memory, redundancy
encoded data slices of the updated set of encoded data
slices; and
storing, by each DS processing module of the plurality of
DS processing modules, another copy of the decode
threshold number of encoded data slices of the updated
set of encoded data slices in the local memory associ-
ated with the respective DS processing module.
6. The method of claim 1, wherein the processing the one

of the read requests comprises:

decoding the retrieved at least one of the redundancy
encoded data slices and the available encoded data
slices of the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory to produce a recaptured data segment; and

sending the recaptured data segment to a user device of
the plurality of user devices that issued the one of the
read requests.

7. The method of claim 1 further comprises:

detecting a need for rebuilding one of the redundancy
encoded data slices;

rebuilding, by one of the plurality of DS processing
modules, the one of the redundancy encoded data slices

30

35

40

45

50

55

o

5

34

based on the copy of the decode threshold number of
encoded data slices stored in the local memory asso-
ciated with the one of the plurality of DS processing
modules; and

sending, by the one of the plurality of DS processing
modules, the rebuilt redundancy encoded data slice to
the non-local DSN memory for storage therein.

8. A non-transitory computer readable storage device

comprises:
a first storage section storing operational instructions that,
when executed by storage units of a dispersed storage
network (DSN), causes the storage units to:
store redundancy encoded data slices of a set of
encoded data slices, wherein a data segment of a data
object is dispersed storage error encoded into the set
of encoded data slices, wherein a decode threshold
number of encoded data slices is needed to recover
the data segment, and wherein the redundancy
encoded data slices corresponds to a total number of
encoded data slices of the set of encoded data slices
less the decode threshold number of encoded data
slices;
a second storage section storing operational instructions
that, when executed by a plurality of dispersed storage
(DS) processing modules of the DSN, causes each of
the DS processing modules to:
store a copy of the decode threshold number of encoded
data slices in local memory associated with a respec-
tive DS processing module; and

receive read requests for the set of encoded data slices
from user devices of a plurality of user devices; and
a third storage section storing operational instructions
that, when executed by a DS processing module of the
plurality of DS processing modules of the DSN, causes
the DS processing module to:
in response to one of the read requests:
determine that at least one encoded data slice of the
copy of the decode threshold number of encoded
data slices stored in a corresponding local memory of
the DS processing module is unavailable;

retrieve at least one of the redundancy encoded data
slices from a non-local DSN memory; and

process the one of the read requests based on the
retrieved at least one of the redundancy encoded data
slices and available encoded data slices of the copy
of the decode threshold number of encoded data
slices stored in the corresponding local memory.

9. The non-transitory computer readable storage device of
claim 8, wherein the third storage section further stores
operational instructions that, when executed by the DS
processing module, causes the DS processing module to:

update the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory by rebuilding each encoded data slice of the at
least one unavailable encoded data slice based on the
retrieved at least one of the redundancy encoded data
slices and the available encoded data slices of the copy
of the decode threshold number of encoded data slices
stored in the corresponding local memory.

10. The non-transitory computer readable storage device
of claim 8, wherein the third storage section further stores
operational instructions that, when executed by the DS
processing module, causes the DS processing module to:

update the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory by replacing the at least one unavailable

US 9,471,427 B2

35

encoded data slice with the retrieved at least one of the
redundancy encoded data slices.

11. The non-transitory computer readable storage device

of claim 8 further comprises:

a fourth storage section storing operational instructions
that, when executed by another DS processing module
of the plurality of DS processing modules of the DSN,
causes the other DS processing module to:

in response to another one of the read requests:

5

determine that the copy of the decode threshold number)

of encoded data slices stored in the corresponding
local memory of the DS processing module is avail-
able; and

process the another one of the read requests based on
the copy of the decode threshold number of encoded
data slices stored in the corresponding local memory.

12. The non-transitory computer readable storage device

of claim 8 further comprises:
a fourth storage section storing operational instructions
that, when executed by a computing device of the DSN
or by one of the plurality of DS processing modules,
causes the computing device or the one of the plurality
of DS processing modules to:
update the data segment to produce an updated data
segment; and

dispersed storage error encode the updated data seg-
ment to produce an updated set of encoded data
slices;

the first storage section further stores operational instruc-
tions that, when executed by the storage units, causes
the storage units to:
store redundancy encoded data slices of the updated set

of encoded data slices; and

the second storage section further stores operational
instructions that, when executed by the plurality of DS
processing modules, causes each of the DS processing
modules to:

15

25

30

36

store another copy of the decode threshold number of
encoded data slices of the updated set of encoded
data slices in the local memory associated with the
respective DS processing module.

13. The non-transitory computer readable storage device
of claim 8, wherein the third storage section further stores
operational instructions that, when executed by the DS
processing module, causes the DS processing module to
processing the one of the read requests by:

decoding the retrieved at least one of the redundancy
encoded data slices and the available encoded data
slices of the copy of the decode threshold number of
encoded data slices stored in the corresponding local
memory to produce a recaptured data segment; and

sending the recaptured data segment to a user device of
the plurality of user devices that issued the one of the
read requests.

14. The non-transitory computer readable storage device

of claim 8 further comprises:
a fourth storage section storing operational instructions
that, when executed by a computing device of the DSN
or by one of the plurality of DS processing modules,
causes the computing device or the one of the plurality
of DS processing modules to:
detect a need for rebuilding one of the redundancy
encoded data slices;

rebuild the one of the redundancy encoded data slices
based on the copy of the decode threshold number of
encoded data slices stored in the local memory
associated with the one of the plurality of DS pro-
cessing modules; and

send the rebuilt redundancy encoded data slice to the
non-local DSN memory for storage therein.

#* #* #* #* #*

